dist_bdegp | R Documentation |
Constructs a BDEGP-Family distribution with fixed number of components and blending interval.
dist_bdegp(n, m, u, epsilon)
n |
Number of dirac components, starting with a point mass at 0. |
m |
Number of erlang components, translated by |
u |
Blending cut-off, must be a positive real. |
epsilon |
Blending radius, must be a positive real less than |
A MixtureDistribution
of
n
DiracDistribution
s at 0 .. n - 1 and
a BlendedDistribution
object with child Distributions
a TranslatedDistribution
with offset n - 0.5
of an ErlangMixtureDistribution
with m
shapes
and a GeneralizedParetoDistribution
with shape parameter restricted to [0, 1] and location parameter fixed
at u
With break u
and bandwidth epsilon
.
Other Distributions:
Distribution
,
dist_beta()
,
dist_binomial()
,
dist_blended()
,
dist_dirac()
,
dist_discrete()
,
dist_empirical()
,
dist_erlangmix()
,
dist_exponential()
,
dist_gamma()
,
dist_genpareto()
,
dist_lognormal()
,
dist_mixture()
,
dist_negbinomial()
,
dist_normal()
,
dist_pareto()
,
dist_poisson()
,
dist_translate()
,
dist_trunc()
,
dist_uniform()
,
dist_weibull()
dist <- dist_bdegp(n = 1, m = 2, u = 10, epsilon = 3)
params <- list(
dists = list(
list(),
list(
dists = list(
list(
dist = list(
shapes = list(1L, 2L),
scale = 1.0,
probs = list(0.7, 0.3)
)
),
list(
sigmau = 1.0,
xi = 0.1
)
),
probs = list(0.1, 0.9)
)
),
probs = list(0.95, 0.05)
)
x <- dist$sample(100, with_params = params)
plot_distributions(
theoretical = dist,
empirical = dist_empirical(x),
.x = seq(0, 20, length.out = 101),
with_params = list(theoretical = params)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.