| dist_bdegp | R Documentation | 
Constructs a BDEGP-Family distribution with fixed number of components and blending interval.
dist_bdegp(n, m, u, epsilon)
| n | Number of dirac components, starting with a point mass at 0. | 
| m | Number of erlang components, translated by  | 
| u | Blending cut-off, must be a positive real. | 
| epsilon | Blending radius, must be a positive real less than  | 
 A MixtureDistribution of
n DiracDistributions at 0 .. n - 1 and
 a BlendedDistribution object with child Distributions
 a TranslatedDistribution with offset n - 0.5 of an ErlangMixtureDistribution with m shapes
 and a GeneralizedParetoDistribution with shape parameter restricted to [0, 1] and location parameter fixed
at u
With break u and bandwidth epsilon.
Other Distributions: 
Distribution,
dist_beta(),
dist_binomial(),
dist_blended(),
dist_dirac(),
dist_discrete(),
dist_empirical(),
dist_erlangmix(),
dist_exponential(),
dist_gamma(),
dist_genpareto(),
dist_lognormal(),
dist_mixture(),
dist_negbinomial(),
dist_normal(),
dist_pareto(),
dist_poisson(),
dist_translate(),
dist_trunc(),
dist_uniform(),
dist_weibull()
dist <- dist_bdegp(n = 1, m = 2, u = 10, epsilon = 3)
params <- list(
  dists = list(
    list(),
    list(
      dists = list(
        list(
          dist = list(
            shapes = list(1L, 2L),
            scale = 1.0,
            probs = list(0.7, 0.3)
          )
        ),
        list(
          sigmau = 1.0,
          xi = 0.1
        )
      ),
      probs = list(0.1, 0.9)
    )
  ),
  probs = list(0.95, 0.05)
)
x <- dist$sample(100, with_params = params)
plot_distributions(
  theoretical = dist,
  empirical = dist_empirical(x),
  .x = seq(0, 20, length.out = 101),
  with_params = list(theoretical = params)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.