Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
# A test data set with three items and ten respondents
testdata <- data.frame(
var_a = c(1,4,3,5,3,2,3,1,3,NA),
var_b = c(2,5,2,3,4,1,NA,2,NA,NA),
var_c = c(1,2,3,NA,3,4,4,5,NA,NA))
testdata
## -----------------------------------------------------------------------------
library(resquin)
# Calculating response style indicators for all respondents with no missing values
results_response_styles <- resp_styles(
x = testdata,
scale_min = 1,
scale_max = 5,
min_valid_responses = 1, # Excludes respondents with less than 100% valid responses
normalize = T) # Presents results in percent of all responses
round(results_response_styles,2)
## -----------------------------------------------------------------------------
results_response_styles |>
summary()
## -----------------------------------------------------------------------------
results_response_styles |>
print()
## -----------------------------------------------------------------------------
# Calulating response distribution indicators for all respondents with no missing values
results_resp_distributions <- resp_distributions(
x = testdata,
min_valid_responses = 1) # Excludes respondents with less than 100% valid responses
round(results_resp_distributions,2)
## -----------------------------------------------------------------------------
results_resp_nondifferentiation <- resp_nondifferentiation(
x = testdata,
min_valid_responses = 1) # Excludes respondents with less than 100% valid responses
round(results_resp_nondifferentiation,2)
## -----------------------------------------------------------------------------
results_resp_patterns <- resp_patterns(testdata)
round(results_resp_patterns,2)
## -----------------------------------------------------------------------------
# Single defined pattern
defined_patterns_single <- resp_patterns(
x = testdata,
defined_patterns = c(1,2,3)
)
defined_patterns_single
# Multiple defined patterns
defined_patterns_multiple <- resp_patterns(
x = testdata,
defined_patterns = list( # wrap multiple pattern vectors into a list
c(1,2,3),
c(2,3,4),
c(4,3,2),
c(3,2,1)
)
)
defined_patterns_multiple
# defined patterns are returned as a single list column.
# One way to make the data accessible is by using tidyr::unnest_wider()
# This way, each column represents the count of one defined pattern
defined_patterns_multiple |>
tidyr::unnest_wider(defined_patterns)
## -----------------------------------------------------------------------------
arbitrary_patterns_length_2 <- resp_patterns(
x = testdata,
arbitrary_patterns = 2
)
arbitrary_patterns_length_2
# You can also request the detection of patterns of multiple
# lengths, in this case 2 and 3
arbitrary_patterns_length_2_3 <- resp_patterns(
x = testdata,
arbitrary_patterns = c(2,3)
)
arbitrary_patterns_length_2_3
## -----------------------------------------------------------------------------
# Default. Integer ids.
resp_distributions(testdata)
# No id column
resp_distributions(testdata,id = F)
# Custom id vectors
custom_ids <- letters[1:nrow(testdata)]
resp_distributions(testdata,id = custom_ids)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.