LieGroup | R Documentation |
Class for Lie groups. In this class, point_type
('vector'
or
'matrix'
) will be used to describe the format of the points on the Lie
group. If point_type
is 'vector'
, the format of the inputs is
dimension
, where dimension
is the dimension of the Lie group. If
point_type
is 'matrix'
, the format of the inputs is c(n, n)
where n
is the parameter of \mathrm{GL}(n) e.g. the amount of rows and
columns of the matrix.
rgeomstats::PythonClass
-> rgeomstats::Manifold
-> LieGroup
lie_algebra
An object of class MatrixLieAlgebra
or NULL
representing the tangent space at the identity.
left_canonical_metric
An object of class InvariantMetric
representing the left invariant metric that corresponds to the
Euclidean inner product at the identity.
right_canonical_metric
An object of class InvariantMetric
representing the left invariant metric that corresponds to the
Euclidean inner product at the identity.
metrics
A list of objects of class RiemannianMetric
.
rgeomstats::PythonClass$get_python_class()
rgeomstats::PythonClass$set_python_class()
rgeomstats::Manifold$belongs()
rgeomstats::Manifold$is_tangent()
rgeomstats::Manifold$random_point()
rgeomstats::Manifold$random_tangent_vec()
rgeomstats::Manifold$regularize()
rgeomstats::Manifold$set_metric()
rgeomstats::Manifold$to_tangent()
new()
The LieGroup
class constructor.
LieGroup$new(dim, shape, lie_algebra = NULL, ..., py_cls = NULL)
dim
An integer value specifying the dimension of the manifold.
shape
An integer vector specifying the shape of one element of the Lie group.
lie_algebra
An object of class MatrixLieAlgebra
or NULL
specifying the tangent space at the identity.
...
Extra arguments to be passed to parent class constructors. See
Manifold
class.
py_cls
A Python object of class LieGroup
. Defaults to NULL
in
which case it is instantiated on the fly using the other input
arguments.
An object of class LieGroup
.
exp()
Exponentiates a left-invariant vector field from a base point.
LieGroup$exp(tangent_vec, base_point = NULL)
tangent_vec
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape [… \times \{
\mathrm{dim}, [n \times n] \}] specifying one or more base points on the
manifold. Defaults to identity if NULL
.
The vector input is not an element of the Lie algebra, but of
the tangent space at base_point
: if g denotes base_point
,
v the tangent vector, and V = g^{-1} v the associated Lie
algebra vector, then
\exp(v, g) = \mathrm{mul}(g, \exp(V))
.
Therefore, the Lie exponential is obtained when base_point
is NULL
,
or the identity.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group exponential of the input tangent vector(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp(rep(0, 3)) }
exp_from_identity()
Compute the group exponential of tangent vector from the identity.
LieGroup$exp_from_identity(tangent_vec)
tangent_vec
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more tangent vectors at corresponding base points.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group exponential of the input tangent vector(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp_from_identity(rep(0, 3)) }
exp_not_from_identity()
Calculate the group exponential at base_point
.
LieGroup$exp_not_from_identity(tangent_vec, base_point)
tangent_vec
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape [… \times \{
\mathrm{dim}, [n \times n] \}] specifying one or more base points on the
manifold. Defaults to identity if NULL
.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group exponential of the input tangent vector(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp_not_from_identity(rep(0, 3), rep(0, 3)) }
log()
Computes a left-invariant vector field bringing base_point
to point
.
LieGroup$log(point, base_point = NULL)
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points on the manifold.
base_point
A numeric array of shape [… \times \{
\mathrm{dim}, [n \times n] \}] specifying one or more base points on the
manifold. Defaults to identity if NULL
.
The output is a vector of the tangent space at base_point
, so
not a Lie algebra element if base_point
is not the identity.
Furthermore, denoting point
by g and base_point
by h,
the output satisfies
g = \exp(\log(g, h), h)
.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group logarithm of the input point(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log(rep(0, 3)) }
log_from_identity()
Computes the group logarithm of point
from the identity.
LieGroup$log_from_identity(point)
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points on the manifold.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group logarithm of the input point(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log_from_identity(rep(0, 3)) }
log_not_from_identity()
Computes the group logarithm at base_point
.
LieGroup$log_not_from_identity(point, base_point)
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points on the manifold.
base_point
A numeric array of shape [… \times \{
\mathrm{dim}, [n \times n] \}] specifying one or more base points on the
manifold. Defaults to identity if NULL
.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the group logarithm of the input point(s).
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log_not_from_identity(rep(0, 3), rep(0, 3)) }
get_identity()
Gets the identity of the group.
LieGroup$get_identity()
A numeric array of shape \{ \mathrm{dim}, [n \times n] \} storing the identity of the Lie group.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$get_identity() }
lie_bracket()
Computes the lie bracket of two tangent vectors.
LieGroup$lie_bracket(tangent_vector_a, tangent_vector_b, base_point = NULL)
tangent_vector_a
A numeric array of shape [… \times n \times n] specifying one or more tangent vectors at corresponding base points.
tangent_vector_b
A numeric array of shape [… \times n \times n] specifying one or more tangent vectors at corresponding base points.
base_point
A numeric array of shape [… \times \{
\mathrm{dim}, [n \times n] \}] specifying one or more base points on the
manifold. Defaults to identity if NULL
.
For matrix Lie groups with tangent vectors A and B at the same base point P, this is given by (translate to identity, compute commutator, go back):
[A,B] = A_P^{-1}B - B_P^{-1}A
.
A numeric array of shape [… \times n \times n] storing the Lie bracket of the two input tangent vectors.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$lie_bracket(diag(0, 3), diag(0, 3)) }
tangent_translation_map()
Computes the push-forward map by the left/right translation.
LieGroup$tangent_translation_map( point, left_or_right = "left", inverse = FALSE )
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points on the manifold.
left_or_right
A character string specifying whether to compute the map
for the left or right translation. Choices are "left"
or "right
.
Defaults to "left"
.
inverse
A boolean specifying whether to inverse the Jacobian
matrix. If set to TRUE
, the push forward by the translation by the
inverse of the point is returned. Defaults to FALSE
.
Computes the push-forward map of the left/right translation by
the point. It corresponds to the tangent map, or differential of the
group multiplication by the point or its inverse. For groups with a
vector representation, it is only implemented at identity, but it can
be used at other points with inverse = TRUE
. This method wraps the
Jacobian translation which actually computes the matrix representation
of the map.
A function computing the tangent map of the left/right
translation by point
. It can be applied to tangent vectors.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$tangent_translation_map(rep(0, 3)) }
compose()
Performs function composition corresponding to the Lie group.
LieGroup$compose(point_a, point_b)
point_a
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more left factors in the product.
point_b
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more right factors in the product.
A numeric array of shape [… \times \{ \mathrm{dim}, [n
\times n] \}] storing the product of point_a
and point_b
along the
first dimension.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$compose(rep(0, 3), rep(0, 3)) }
jacobian_translation()
Computes the Jacobian of left/right translation by a point.
LieGroup$jacobian_translation(point, left_or_right = "left")
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points on the manifold.
left_or_right
A character string specifying whether to compute the map
for the left or right translation. Choices are "left"
or "right
.
Defaults to "left"
.
A numeric array of shape [… \times \mathrm{dim} \times
\mathrm{dim}] storing the Jacobian of the left/right translation by
point
.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$jacobian_translation(rep(0, 3)) }
inverse()
Computes the inverse law of the Lie group.
LieGroup$inverse(point)
point
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] specifying one or more points to be inverted.
A numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \}] storing the inverted points.
if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$inverse(rep(0, 3)) }
add_metric()
Adds a metric to the class $metrics
attribute.
LieGroup$add_metric(metric)
metric
An object of class RiemannianMetric
.
The class itself invisibly.
clone()
The objects of this class are cloneable with this method.
LieGroup$clone(deep = FALSE)
deep
Whether to make a deep clone.
Nina Miolane
## ------------------------------------------------ ## Method `LieGroup$exp` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$exp_from_identity` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp_from_identity(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$exp_not_from_identity` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$exp_not_from_identity(rep(0, 3), rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$log` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$log_from_identity` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log_from_identity(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$log_not_from_identity` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$log_not_from_identity(rep(0, 3), rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$get_identity` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$get_identity() } ## ------------------------------------------------ ## Method `LieGroup$lie_bracket` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$lie_bracket(diag(0, 3), diag(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$tangent_translation_map` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$tangent_translation_map(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$compose` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$compose(rep(0, 3), rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$jacobian_translation` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$jacobian_translation(rep(0, 3)) } ## ------------------------------------------------ ## Method `LieGroup$inverse` ## ------------------------------------------------ if (reticulate::py_module_available("geomstats")) { so3 <- SpecialOrthogonal(n = 3, point_type = "vector") so3$inverse(rep(0, 3)) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.