| MatrixLieGroup | R Documentation |
Class for matrix Lie groups.
rgeomstats::PythonClass -> rgeomstats::Manifold -> MatrixLieGroup
lie_algebraAn object of class MatrixLieAlgebra or NULL
representing the tangent space at the identity.
nThe size of the n \times n matrix elements.
left_canonical_metricAn object of class InvariantMetric
representing the left invariant metric that corresponds to the
Euclidean inner product at the identity.
right_canonical_metricAn object of class InvariantMetric
representing the left invariant metric that corresponds to the
Euclidean inner product at the identity.
rgeomstats::PythonClass$get_python_class()rgeomstats::PythonClass$set_python_class()rgeomstats::Manifold$belongs()rgeomstats::Manifold$is_tangent()rgeomstats::Manifold$random_point()rgeomstats::Manifold$random_tangent_vec()rgeomstats::Manifold$regularize()rgeomstats::Manifold$set_metric()rgeomstats::Manifold$to_tangent()new()The MatrixLieGroup class constructor.
MatrixLieGroup$new(dim, n, lie_algebra = NULL, ..., py_cls = NULL)
dimAn integer value specifying the dimension of the manifold.
nThe size of the n \times n matrix elements.
lie_algebraAn object of class MatrixLieAlgebra or NULL
representing the tangent space at the identity.
...Extra arguments to be passed to parent class constructors. See
Manifold class.
py_clsA Python object of class MatrixLieGroup. Defaults to
NULL in which case it is instantiated on the fly using the other
input arguments.
An object of class MatrixLieGroup.
exp()Exponentiates a left-invariant vector field from a base point.
MatrixLieGroup$exp(tangent_vec, base_point = NULL)
tangent_vecA numeric array of shape [… \times n \times n] specifying one or more tangent vectors at corresponding base points.
base_pointA numeric array of shape [… \times n \times n]
specifying one or more base points on the manifold. Defaults to identity if
NULL.
The vector input is not an element of the Lie algebra, but of
the tangent space at base_point: if g denotes base_point,
v the tangent vector, and V = g^{-1} v the associated Lie
algebra vector, then
\exp(v, g) = \mathrm{mul}(g, \exp(V))
.
Therefore, the Lie exponential is obtained when base_point is NULL,
or the identity.
A numeric array of shape [… \times n \times n] storing the left multiplication of the Lie exponential of the input tangent vectors with the corresponding base points.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
# so3$exp(diag(1, 3)) # TO DO: fix in gs
}
log()Computes a left-invariant vector field bringing base_point
to point.
MatrixLieGroup$log(point, base_point = NULL)
pointA numeric array of shape [… \times n \times n] specifying one or more points.
base_pointA numeric array of shape [… \times n \times n]
specifying one or more base points on the manifold. Defaults to identity if
NULL.
The output is a vector of the tangent space at base_point, so
not a Lie algebra element if base_point is not the identity.
Furthermore, denoting point by g and base_point by h,
the output satisfies
g = \exp(\log(g, h), h)
.
A numeric array of shape [… \times n \times n] such that its Lie exponential at corresponding base points matches corresponding points.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$log(diag(1, 3))
}
get_identity()Gets the identity of the group.
MatrixLieGroup$get_identity()
A numeric array of shape n \times n storing the identity of the Lie group.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$get_identity()
}
lie_bracket()Computes the lie bracket of two tangent vectors.
MatrixLieGroup$lie_bracket( tangent_vector_a, tangent_vector_b, base_point = NULL )
tangent_vector_aA numeric array of shape [… \times n \times n] specifying one or more tangent vectors at corresponding base points.
tangent_vector_bA numeric array of shape [… \times n \times n] specifying one or more tangent vectors at corresponding base points.
base_pointA numeric array of shape [… \times n \times n]
specifying one or more base points on the manifold. Defaults to identity if
NULL.
For matrix Lie groups with tangent vectors A and B at the same base point P, this is given by (translate to identity, compute commutator, go back):
[A,B] = A_P^{-1}B - B_P^{-1}A
.
A numeric array of shape [… \times n \times n] storing the Lie bracket of the two input tangent vectors.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$lie_bracket(diag(0, 3), diag(1, 3))
}
tangent_translation_map()Computes the push-forward map by the left/right translation.
MatrixLieGroup$tangent_translation_map( point, left_or_right = "left", inverse = FALSE )
pointA numeric array of shape [… \times \{ \mathrm{dim}, [n \times n] \} ] specifying one or more points at which to compute the map.
left_or_rightA character string specifying whether to compute the
map for the left or right translation. Choices are "left" or
"right. Defaults to "left".
inverseA boolean specifying whether to inverse the Jacobian
matrix. If set to TRUE, the push forward by the translation by the
inverse of the point is returned. Defaults to FALSE.
Computes the push-forward map of the left/right translation by
the point. It corresponds to the tangent map, or differential of the
group multiplication by the point or its inverse. For groups with a
vector representation, it is only implemented at identity, but it can
be used at other points with inverse = TRUE. This method wraps the
Jacobian translation which actually computes the matrix representation
of the map.
A function taking as argument a numeric array tangent_vec of
shape [… \times \{ \mathrm{dim}, [n \times n] \} ] specifying
one or more tangent vectors and returning a numeric array of shape
[… \times \{ \mathrm{dim}, [n \times n] \} ] storing the
result of the tangent mapping of the left/right translation of input
tangent points by corresponding base points.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
tangent_map <- so3$tangent_translation_map(diag(1, 3))
tangent_map(diag(1, 3))
}
compose()Performs function composition corresponding to the Lie group.
MatrixLieGroup$compose(point_a, point_b)
point_aA numeric array of shape [… \times \{ \mathrm{dim}, n \times n \}] specifying one or more left factors in the product.
point_bA numeric array of shape [… \times \{ \mathrm{dim}, n \times n \}] specifying one or more right factors in the product.
A numeric array of shape [… \times \{ \mathrm{dim}, n
\times n \}] storing the product of point_a and point_b along the
first dimension.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$compose(diag(1, 3), diag(1, 3))
}
inverse()Computes the inverse law of the Lie group.
MatrixLieGroup$inverse(point)
pointA numeric array of shape [… \times \{ \mathrm{dim}, n \times n \}] specifying one or more points to be inverted.
A numeric array of the same shape storing the inverted points.
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$inverse(diag(1, 3))
}
clone()The objects of this class are cloneable with this method.
MatrixLieGroup$clone(deep = FALSE)
deepWhether to make a deep clone.
Nina Miolane
## ------------------------------------------------
## Method `MatrixLieGroup$exp`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
# so3$exp(diag(1, 3)) # TO DO: fix in gs
}
## ------------------------------------------------
## Method `MatrixLieGroup$log`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$log(diag(1, 3))
}
## ------------------------------------------------
## Method `MatrixLieGroup$get_identity`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$get_identity()
}
## ------------------------------------------------
## Method `MatrixLieGroup$lie_bracket`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$lie_bracket(diag(0, 3), diag(1, 3))
}
## ------------------------------------------------
## Method `MatrixLieGroup$tangent_translation_map`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
tangent_map <- so3$tangent_translation_map(diag(1, 3))
tangent_map(diag(1, 3))
}
## ------------------------------------------------
## Method `MatrixLieGroup$compose`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$compose(diag(1, 3), diag(1, 3))
}
## ------------------------------------------------
## Method `MatrixLieGroup$inverse`
## ------------------------------------------------
if (reticulate::py_module_available("geomstats")) {
so3 <- SpecialOrthogonal(n = 3)
so3$inverse(diag(1, 3))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.