genouts: Generates hypothesized potential outcomes under a constant...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/genouts.R

Description

Takes an outcome variable, a treatment assignment, and a hypothesized treatment effect and generates a set of hypothesized potential outcomes

Usage

1
genouts(Y, Z, ate = 0)

Arguments

Y

numeric vector of N-length, outcome variable

Z

binary vector (0 or 1) of N-length, treatment indicator

ate

numeric scalar, hypothesized treatment effect

Value

list consisting of two N-length numeric vectors labeled Y0 and Y1

Author(s)

Peter M. Aronow <[email protected]>; Cyrus Samii <[email protected]>

References

Gerber, Alan S. and Donald P. Green. 2012. Field Experiments: Design, Analysis, and Interpretation. New York: W.W. Norton.

See Also

estate

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
y <- c(8,6,2,0,3,1,1,1,2,2,0,1,0,2,2,4,1,1) 
Z <- c(1,1,0,0,1,1,0,0,1,1,1,1,0,0,1,1,0,0)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))

perms <- genperms(Z,blockvar=block, clustvar=cluster) # all possible permutations
probs <- genprobexact(Z,blockvar=block, clustvar=cluster) # probability of treatment
ate <- estate(y,Z,prob=probs) # estimate the ATE

## Conduct Sharp Null Hypothesis Test of Zero Effect for Each Unit

Ys <- genouts(y,Z,ate=0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under sharp null
dispdist(distout, ate)  # display characteristics of sampling dist. for inference

## Generate Sampling Distribution Around Estimated ATE

Ys <- genouts(y,Z,ate=ate) ## generate potential outcomes under tau = ATE
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under tau = ATE
dispdist(distout, ate)  ## display characteristics of sampling dist. for inference

Example output

$two.tailed.p.value
[1] 0.1666667

$two.tailed.p.value.abs
[1] 0.1944444

$greater.p.value
[1] 0.08333333

$lesser.p.value
[1] 0.9444444

$quantile
     2.5%     97.5% 
-2.055556  2.222222 

$sd
[1] 1.440879

$exp.val
[1] 1.048454e-16

$two.tailed.p.value
[1] 1

$two.tailed.p.value.abs
[1] 0.5

$greater.p.value
[1] 0.5

$lesser.p.value
[1] 0.5833333

$quantile
     2.5%     97.5% 
0.2222222 3.6111111 

$sd
[1] 1.074393

$exp.val
[1] 2

ri documentation built on May 2, 2019, 6:51 a.m.