IPA | R Documentation |
Index of Prediction Accuracy: General R^2 for binary outcome and right censored time to event (survival) outcome also with competing risks
rsquared(object,...)
IPA(object,...)
## Default S3 method:
rsquared(object,formula,newdata,times,cause,...)
## S3 method for class 'glm'
rsquared(object,formula,newdata,...)
## S3 method for class 'coxph'
rsquared(object,formula,newdata,times,...)
## S3 method for class 'CauseSpecificCox'
rsquared(object,formula,newdata,times,cause,...)
## Default S3 method:
IPA(object,formula,newdata,times,cause,...)
## S3 method for class 'glm'
IPA(object,formula,newdata,...)
## S3 method for class 'coxph'
IPA(object,formula,newdata,times,...)
## S3 method for class 'CauseSpecificCox'
IPA(object,formula,newdata,times,cause,...)
object |
Model for which we want IPA. |
... |
passed to |
newdata |
Optional validation data set in which to compute IPA |
formula |
Formula passed to |
cause |
For competing risk models the event of interest |
times |
Vector of time points used as prediction horizon for the computation of Brier scores. |
IPA (R^2) is calculated based on the model's predicted risks. The Brier score of the model is compared to the Brier score of the null model.
Data frame with explained variation values for the full model.
Thomas A. Gerds <tag@biostat.ku.dk>
Score
library(prodlim)
library(data.table)
# binary outcome
library(lava)
set.seed(18)
learndat <- sampleData(48,outcome="binary")
lr1 = glm(Y~X1+X2+X7+X9,data=learndat,family=binomial)
IPA(lr1)
## validation data
valdat=sampleData(94,outcome="binary")
IPA(lr1,newdata=valdat)
## predicted risks externally given
p1=predictRisk(lr1,newdata=valdat)
IPA(p1,formula=Y~1,valdat)
# survival
library(survival)
data(pbc)
pbc=na.omit(pbc)
pbctest=(1:NROW(pbc)) %in% sample(1:NROW(pbc),size=.632*NROW(pbc))
pbclearn=pbc[pbctest,]
cox1= coxph(Surv(time,status!=0)~age+sex+log(bili)+log(albumin)+log(protime),
data=pbclearn,x=TRUE)
## same data
IPA(cox1,formula=Surv(time,status!=0)~1,times=1000)
## validation data
pbcval=pbc[!pbctest,]
IPA(cox1,formula=Surv(time,status!=0)~1,newdata=pbcval,times=1000)
## predicted risks externally given
p2=predictRisk(cox1,newdata=pbcval,times=1000)
IPA(cox1,formula=Surv(time,status!=0)~1,newdata=pbcval,times=1000)
# competing risks
data(Melanoma)
Melanomatest=(1:NROW(Melanoma)) %in% sample(1:NROW(Melanoma),size=.632*NROW(Melanoma))
Melanomalearn=Melanoma[Melanomatest,]
fit1 <- CSC(list(Hist(time,status)~sex,
Hist(time,status)~invasion+epicel+age),
data=Melanoma)
IPA(fit1,times=1000,cause=2)
## validation data
Melanomaval=Melanoma[!Melanomatest,]
IPA(fit1,formula=Hist(time,status)~1,newdata=Melanomaval,times=1000)
## predicted risks externally given
p3= predictRisk(fit1,cause=1,newdata=Melanomaval,times=1000)
IPA(p3,formula=Hist(time,status)~1,cause=1,newdata=Melanomaval,times=1000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.