View source: R/plotPredictRisk.R
| plotPredictRisk | R Documentation |
Time-dependent event risk predictions.
plotPredictRisk(
x,
newdata,
times,
cause = 1,
xlim,
ylim,
xlab,
ylab,
axes = TRUE,
col,
density,
lty,
lwd,
add = FALSE,
legend = TRUE,
percent = FALSE,
...
)
x |
Object specifying an event risk prediction model. |
newdata |
A data frame with the same variable names as those that were
used to fit the model |
times |
Vector of times at which to return the estimated probabilities. |
cause |
Show predicted risk of events of this cause |
xlim |
Plotting range on the x-axis. |
ylim |
Plotting range on the y-axis. |
xlab |
Label given to the x-axis. |
ylab |
Label given to the y-axis. |
axes |
Logical. If |
col |
Vector of colors given to the survival curve. |
density |
Densitiy of the color – useful for showing many (overlapping) curves. |
lty |
Vector of lty's given to the survival curve. |
lwd |
Vector of lwd's given to the survival curve. |
add |
Logical. If |
legend |
Logical. If TRUE a legend is plotted by calling the function
legend. Optional arguments of the function |
percent |
Logical. If |
... |
Parameters that are filtered by |
Arguments for the invoked functions legend and axis can be
specified as legend.lty=2. The specification is not case sensitive,
thus Legend.lty=2 or LEGEND.lty=2 will have the same effect.
The function axis is called twice, and arguments of the form
axis1.labels, axis1.at are used for the time axis whereas
axis2.pos, axis1.labels, etc., are used for the y-axis.
These arguments are processed via ...{} of
plotPredictRisk and inside by using the function
SmartControl.
The (invisible) object.
Ulla B. Mogensen and Thomas A. Gerds tag@biostat.ku.dk
Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23. URL http://www.jstatsoft.org/v50/i11/.
plotRisk
library(survival)
# generate survival data
# no effect
set.seed(8)
d <- sampleData(80,outcome="survival",formula = ~f(X6, 0) + f(X7, 0))
d[,table(event)]
f <- coxph(Surv(time,event)~X6+X7,data=d,x=1)
plotPredictRisk(f)
# large effect
set.seed(8)
d <- sampleData(80,outcome="survival",formula = ~f(X6, 0.1) + f(X7, -0.1))
d[,table(event)]
f <- coxph(Surv(time,event)~X6+X7,data=d,x=1)
plotPredictRisk(f)
# generate competing risk data
# small effect
set.seed(8)
d <- sampleData(40,formula = ~f(X6, 0.01) + f(X7, -0.01))
d[,table(event)]
f <- CSC(Hist(time,event)~X5+X6,data=d)
plotPredictRisk(f)
# large effect
set.seed(8)
d <- sampleData(40,formula = ~f(X6, 0.1) + f(X7, -0.1))
d[,table(event)]
f <- CSC(Hist(time,event)~X5+X6,data=d)
plotPredictRisk(f)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.