plot_curve | R Documentation |
plot_curve
draws curves of selected values
(including PPV
, NPV
)
as a function of the prevalence (prev
)
for given values of
sensitivity sens
(or
miss rate mirt
) and
specificity spec
(or
false alarm rate fart
).
plot_curve( prev = num$prev, sens = num$sens, mirt = NA, spec = num$spec, fart = NA, what = c("prev", "PPV", "NPV"), p_lbl = "def", p_lwd = 2, what_col = pal, uc = 0, show_points = TRUE, log_scale = FALSE, prev_range = c(0, 1), lbl_txt = txt, main = txt$scen_lbl, sub = "type", title_lbl = NULL, cex_lbl = 0.85, col_pal = pal, mar_notes = FALSE, ... )
prev |
The condition's prevalence |
sens |
The decision's sensitivity |
mirt |
The decision's miss rate |
spec |
The decision's specificity |
fart |
The decision's false alarm rate |
what |
Vector of character codes that specify the
selection of curves to be plotted. Currently available
options are |
p_lbl |
Type of label for shown probability values, with the following options:
|
p_lwd |
Line widths of probability curves plotted.
Default: |
what_col |
Vector of colors corresponding to the elements
specified in |
uc |
Uncertainty range, given as a percentage of the current
|
show_points |
Boolean value for showing the point of
intersection with the current prevalence |
log_scale |
Boolean value for switching from a linear
to a logarithmic x-axis.
Default: |
prev_range |
Range (minimum and maximum) of |
lbl_txt |
Labels and text elements.
Default: |
main |
Text label for main plot title.
Default: |
sub |
Text label for plot subtitle (on 2nd line).
Default: |
title_lbl |
Deprecated text label for current plot title.
Replaced by |
cex_lbl |
Scaling factor for the size of text labels
(e.g., on axes, legend, margin text).
Default: |
col_pal |
Color palette (if what_col is unspecified).
Default: |
mar_notes |
Boolean value for showing margin notes.
Default: |
... |
Other (graphical) parameters. |
If no prevalence value is provided (i.e., prev = NA
),
the desired probability curves are plotted without showing
specific points (i.e., show_points = FALSE
).
Note that a population size N
is not needed for
computing probability information prob
.
(An arbitrary value can be used when computing frequency information
freq
from current probabilities prob
.)
plot_curve
is a generalization of
plot_PV
(see legacy code)
that allows plotting additional dependent values.
comp_prob
computes current probability information;
prob
contains current probability information;
comp_freq
computes current frequency information;
freq
contains current frequency information;
num
for basic numeric parameters;
txt
for current text settings;
pal
for current color settings.
Other visualization functions:
plot.riskyr()
,
plot_area()
,
plot_bar()
,
plot_crisk()
,
plot_fnet()
,
plot_icons()
,
plot_mosaic()
,
plot_plane()
,
plot_prism()
,
plot_tab()
,
plot_tree()
# Basics: plot_curve() # default curve plot, same as: # plot_curve(what = c("prev", "PPV", "NPV"), uc = 0, prev_range = c(0, 1)) # Showing no/multiple prev values/points and uncertainty ranges: plot_curve(prev = NA) # default curves without prev value (and point) shown plot_curve(show_points = FALSE, uc = .10) # curves w/o points, 10% uncertainty range plot_curve(prev = c(.10, .33, .75)) # 3 prev values, with numeric point labels plot_curve(prev = c(.10, .33, .75), p_lbl = "no", uc = .10) # 3 prev, no labels, 10% uc # Provide local parameters and select curves: plot_curve(prev = .2, sens = .8, spec = .6, what = c("PPV", "NPV", "acc"), uc = .2) # Selecting curves: what = ("prev", "PPV", "NPV", "ppod", "acc") = "all" plot_curve(prev = .3, sens = .9, spec = .8, what = "all") # all curves # plot_curve(what = c("PPV", "NPV")) # PPV and NPV plot_curve(what = c("prev", "PPV", "NPV", "acc")) # prev, PPV, NPV, and acc # plot_curve(what = c("prev", "PPV", "NPV", "ppod")) # prev, PPV, NPV, and ppod # Visualizing uncertainty (uc as percentage range): plot_curve(prev = .2, sens = .9, spec = .8, what = "all", uc = .10) # all with a 10% uncertainty range # plot_curve(prev = .3, sens = .9, spec = .8, what = c("prev", "PPV", "NPV"), # uc = .05) # prev, PPV and NPV with a 5% uncertainty range # X-axis on linear vs. log scale: plot_curve(prev = .01, sens = .9, spec = .8) # linear scale plot_curve(prev = .01, sens = .9, spec = .8, log_scale = TRUE) # log scale # Several small prev values: plot_curve(prev = c(.00001, .0001, .001, .01, .05), sens = .9, spec = .8, log_scale = TRUE) # Zooming in by setting prev_range (of prevalence values): plot_curve(prev = c(.25, .33, .40), prev_range = c(.20, .50), what = "all", uc = .05) # Probability labels: plot_curve(p_lbl = "abb", what = "all") # abbreviated names plot_curve(p_lbl = "nam", what = "all") # names only plot_curve(p_lbl = "num", what = "all") # numeric values only plot_curve(p_lbl = "namnum", what = "all") # names and values # Text and color settings: plot_curve(main = "Tiny text labels", p_lbl = "namnum", cex_lbl = .60) plot_curve(main = "Specific colors", what = "all", uc = .1, what_col = c("grey", "red3", "green3", "blue3", "gold")) plot_curve(main = "Black-and-white print version", what = "all", col_pal = pal_bwp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.