# R/comp_xxxx_prob.R In riskyr: Rendering Risk Literacy more Transparent

#### Documented in comp_freq_probcomp_prob_prob

## comp_xxxx_prob.R | riskyr
## 2018 12 20
## 2 wrapper functions (that use existing functions)
## to translate from prob (back) to freq and prob:
## -----------------------------------------------

## (A) Compute frequencies from (3 essential) probabilities: --------

## Note: comp_freq_prob is a WRAPPER function for the more basic
##       comp_freq(prev, sens, spec) defined before (in init_freq_num.R).

## comp_freq_prob: Documentation ------

#' Compute frequencies from (3 essential) probabilities.
#'
#' \code{comp_freq_prob} computes current frequency information
#' from a sufficient and valid set of 3 essential probabilities
#' \code{\link{sens}} or its complement \code{\link{mirt}}, and
#' It returns a list of 11 frequencies (\code{\link{freq}})
#' as its output.
#'
#' \code{comp_freq_prob} is a wrapper function for the more basic
#' function \code{\link{comp_freq}}, which only accepts
#' 3 essential probabilities (i.e., \code{\link{prev}}, \code{\link{sens}},
#' and \code{\link{spec}}) as inputs.
#'
#' Defaults and constraints:
#'
#' \itemize{
#'
#'    \item Initial values:
#'
#'    By default, the values of \code{\link{prev}}, \code{\link{sens}},
#'    and \code{\link{spec}} are initialized to the probability information
#'    currently contained in \code{\link{prob}}.
#'
#'    Similarly, the population size \code{\link{N}} uses the frequency
#'    information currently contained in \code{\link{freq}} as its default.
#'    If \code{\link{N}} is unknown (\code{NA}),
#'    a suitable minimum value is computed by \code{\link{comp_min_N}}.
#'
#'    \item Constraints:
#'
#'    When using \code{comp_freq_prob} with the arguments
#'    \code{\link{sens}} and \code{\link{spec}} must either be
#'    valid complements (as in \code{\link{is_complement}}) or
#'    set to \code{NA}.
#'
#'    and \code{\link{spec}} are necessary arguments.
#'    If only their complements \code{\link{mirt}} or \code{\link{fart}}
#'    are known, first use \code{\link{comp_complement}},
#'    to compute the 3 essential probabilities.
#'
#'    \item Rounding:
#'
#'    By default, \code{comp_freq_prob} and its basic function
#'    \code{\link{comp_freq}} round frequencies to nearest integers
#'    to avoid decimal values in \code{\link{freq}}
#'    (i.e., \code{round = TRUE} by default).
#'
#'    When frequencies are rounded, probabilities computed from
#'    \code{\link{freq}} may differ from exact probabilities.
#'
#'    Using the option \code{round = FALSE} turns off rounding.
#'
#' }
#'
#' Key relationships between frequencies and probabilities
#' (see documentation of \code{\link{comp_freq}} or \code{\link{comp_prob}} for details):
#'
#' \itemize{
#'
#'   \item Three perspectives on a population:
#'
#'   by condition / by decision / by accuracy.
#'
#'   \item Defining probabilities in terms of frequencies:
#'
#'   Probabilities can be computed as ratios between frequencies, but beware of rounding issues.
#'
#' }
#'
#'
#' Functions translating between representational formats:
#' (see documentation of \code{\link{comp_prob_prob}} for details).
#'
#'
#' @param prev  The condition's prevalence \code{\link{prev}}
#' (i.e., the probability of condition being \code{TRUE}).
#'
#' @param sens  The decision's sensitivity \code{\link{sens}}
#' (i.e., the conditional probability of a positive decision
#' provided that the condition is \code{TRUE}).
#' \code{sens} is optional when its complement \code{mirt} is provided.
#'
#' @param mirt  The decision's miss rate \code{\link{mirt}}
#' (i.e., the conditional probability of a negative decision
#' provided that the condition is \code{TRUE}).
#' \code{mirt} is optional when its complement \code{sens} is provided.
#'
#' @param spec  The decision's specificity value \code{\link{spec}}
#' (i.e., the conditional probability
#' of a negative decision provided that the condition is \code{FALSE}).
#' \code{spec} is optional when its complement \code{fart} is provided.
#'
#' @param fart  The decision's false alarm rate \code{\link{fart}}
#' (i.e., the conditional probability
#' of a positive decision provided that the condition is \code{FALSE}).
#' \code{fart} is optional when its complement \code{spec} is provided.
#'
#' @param tol  A numeric tolerance value for \code{\link{is_complement}}.
#' Default: \code{tol = .01}.
#'
#' @param N  The number of individuals in the population.
#' If \code{\link{N}} is unknown (\code{NA}),
#' a suitable minimum value is computed by \code{\link{comp_min_N}}.
#'
#' @param round  A Boolean value that determines whether frequencies are
#' rounded to the nearest integer. Default: \code{round = TRUE}.
#'
#' @return A list \code{\link{freq}} containing 11 frequency values.
#'
#' @examples
#' # Basics:
#' comp_freq_prob(prev = .1, sens = .9, spec = .8, N = 100)  # => ok: hi = 9, ... cr = 72.
#' # Same case with complements (using NAs to prevent defaults):
#' comp_freq_prob(prev = .1, sens = NA, mirt = .1, spec = NA, fart = .2, N = 100)  # => same result
#'
#' comp_freq_prob()                   # => ok, using probability info currently contained in prob
#' length(comp_freq_prob())           # => a list containing 9 frequencies
#' all.equal(freq, comp_freq_prob())  # => TRUE, unless prob has been changed after computing freq
#' freq <- comp_freq_prob()           # => computes frequencies and stores them in freq
#'
#' # Ways to work:
#' comp_freq_prob(prev = 1, sens = 1, spec = 1, N = 101)  # => ok + warning: N hits (TP)
#'
#' # Same case with complements (using NAs to prevent defaults):
#' comp_freq_prob(prev = 1, sens = NA, mirt = 0, spec = NA, fart = 0, N = 101)
#'
#' comp_freq_prob(prev = 1, sens = 1, spec = 0, N = 102)  # => ok + warning: N hits (TP)
#' comp_freq_prob(prev = 1, sens = 0, spec = 1, N = 103)  # => ok + warning: N misses (FN)
#' comp_freq_prob(prev = 1, sens = 0, spec = 0, N = 104)  # => ok + warning: N misses (FN)
#' comp_freq_prob(prev = 0, sens = 1, spec = 1, N = 105)  # => ok + warning: N correct rejections (TN)
#'
#' comp_freq_prob(prev = 0, sens = 1, spec = 0, N = 106)  # => ok + warning: N false alarms (FP)
#'
#' # Same case with complements (using NAs to prevent defaults):
#' comp_freq_prob(prev = 0, sens = NA, mirt = 0,
#'                spec = NA, fart = 1, N = 106)  # => ok + warning: N false alarms (FP)
#'
#' # Watch out for:
#' comp_freq_prob(prev = 1, sens = 1, spec = 1, N = NA)  # => ok + warning: N = 1 computed
#' comp_freq_prob(prev = 1, sens = 1, spec = 1, N =  0)  # => ok, but all 0 + warning (NPV = NaN)
#' comp_freq_prob(prev = .5, sens = .5, spec = .5, N = 10, round = TRUE)  # => ok, but all rounded
#' comp_freq_prob(prev = .5, sens = .5, spec = .5, N = 10, round = FALSE) # => ok, but not rounded
#'
#' # Ways to fail:
#' comp_freq_prob(prev = NA, sens = 1, spec = 1, 100)  # => NAs + no warning (prev NA)
#' comp_freq_prob(prev = 1, sens = NA, spec = 1, 100)  # => NAs + no warning (sens NA)
#' comp_freq_prob(prev = 1, sens = 1, spec = NA, 100)  # => NAs + no warning (spec NA)
#' comp_freq_prob(prev = 8, sens = 1, spec = 1,  100)  # => NAs + warning (prev beyond range)
#' comp_freq_prob(prev = 1, sens = 8, spec = 1,  100)  # => NAs + warning (sens & spec beyond range)
#'
#' @family functions computing frequencies
#' @family format conversion functions
#'
#' @seealso
#' \code{\link{comp_freq_freq}} computes current frequency information from (4 essential) frequencies;
#' \code{\link{comp_prob_freq}} computes current probability information from (4 essential) frequencies;
#' \code{\link{comp_prob_prob}} computes current probability information from (3 essential) probabilities;
#' \code{\link{num}} contains basic numeric variables;
#' \code{\link{init_num}} initializes basic numeric variables;
#' \code{\link{freq}} contains current frequency information;
#' \code{\link{comp_freq}} computes current frequency information;
#' \code{\link{prob}} contains current probability information;
#' \code{\link{comp_prob}} computes current probability information;
#' \code{\link{comp_complement}} computes a probability's complement;
#' \code{\link{comp_comp_pair}} computes pairs of complements;
#' \code{\link{comp_complete_prob_set}} completes valid sets of probabilities;
#' \code{\link{comp_min_N}} computes a suitable population size \code{\link{N}} (if missing).
#'
#' @export

## comp_freq_prob: Definition ------

comp_freq_prob <- function(prev = prob$prev, # 3 essential probabilities (removed: mirt & fart): sens = prob$sens, mirt = NA, # using current probability info contained in prob!
spec = prob$spec, fart = NA, tol = .01, # tolerance for is_complement N = freq$N,        # using current freq info contained in freq!
round = TRUE       # should freq be rounded to integers? (default: round = TRUE)
) {

## (A) If a valid set of probabilities was provided:
if (is_valid_prob_set(prev = prev, sens = sens, mirt = mirt, spec = spec, fart = fart, tol = tol)) {

# (1) Compute the complete quintet of probabilities:
prob_quintet <- comp_complete_prob_set(prev, sens, mirt, spec, fart)
sens <- prob_quintet[2] # gets sens (if not provided)
mirt <- prob_quintet[3] # gets mirt (if not provided)
spec <- prob_quintet[4] # gets spec (if not provided)
fart <- prob_quintet[5] # gets fart (if not provided)

# (2) Pass on:
# Wrapper function: Delegate to existing and more basic function:
freq <- comp_freq(prev, sens, spec,  # 3 essential probabilities; currently NOT SUPPORTED: 2 optional (mirt, fart)
N, round)

# (3) Return entire list freq:
return(freq)

}

else { # (B) NO valid set of probabilities was provided:

warning("Please enter a valid set of essential probabilities.")

}  # if (is_valid_prob_set(...

}

## Check: ------

# # Basics:
# comp_freq_prob(prev = .1, sens = .9, spec = .8, N = 100)  # => ok: hi = 9, mi = 1, fa = 18, cr = 72.
# # Same case with complements (using NAs to prevent defaults):
# comp_freq_prob(prev = .1, sens = NA, mirt = .1, spec = NA, fart = .2, N = 100)  # => same result
#
# comp_freq_prob()                   # => ok, using probability info currently contained in prob
# length(comp_freq_prob())           # => a list containing 9 frequencies
# all.equal(freq, comp_freq_prob())  # => TRUE, unless prob has been changed after computing freq
# freq <- comp_freq_prob()           # => computes frequencies and stores them in freq
#
# # Ways to work:
# comp_freq_prob(prev = 1, sens = 1, spec = 1, N = 101)  # => ok + warning: N hits (TP)
# # Same case with complements (using NAs to prevent defaults):
# comp_freq_prob(prev = 1, sens = NA, mirt = 0, spec = NA, fart = 0, N = 101)
#
# comp_freq_prob(prev = 1, sens = 1, spec = 0, N = 102)  # => ok + warning: N hits (TP)
# comp_freq_prob(prev = 1, sens = 0, spec = 1, N = 103)  # => ok + warning: N misses (FN)
# comp_freq_prob(prev = 1, sens = 0, spec = 0, N = 104)  # => ok + warning: N misses (FN)
# comp_freq_prob(prev = 0, sens = 1, spec = 1, N = 105)  # => ok + warning: N correct rejections (TN)
#
# comp_freq_prob(prev = 0, sens = 1, spec = 0, N = 106)  # => ok + warning: N false alarms (FP)
# # Same case with complements (using NAs to prevent defaults):
# comp_freq_prob(prev = 0, sens = NA, mirt = 0, spec = NA, fart = 1, N = 106)  # => ok + warning: N false alarms (FP)
#
# # Watch out for:
# comp_freq_prob(prev = 1, sens = 1, spec = 1, N = NA)  # => ok + additional warning that N = 1 was computed
# comp_freq_prob(prev = 1, sens = 1, spec = 1, N =  0)  # => ok, but all 0 + warning (extreme case: N hits, NPV = NaN)
# comp_freq_prob(prev = .5, sens = .5, spec = .5, N = 10, round = TRUE)   # => ok, but all rounded (increasing errors: mi and fa)
# comp_freq_prob(prev = .5, sens = .5, spec = .5, N = 10, round = FALSE)  # => ok, but not rounded
#
# # Ways to fail:
# comp_freq_prob(prev = NA,  sens = 1, spec = 1,  100)   # => NAs + no warning (prev NA)
# comp_freq_prob(prev = 1,  sens = NA, spec = 1,  100)   # => NAs + no warning (sens NA)
# comp_freq_prob(prev = 1,  sens = 1,  spec = NA, 100)   # => NAs + no warning (spec NA)
# comp_freq_prob(prev = 8,  sens = 1,  spec = 1,  100)   # => NAs + warning (prev beyond range)
# comp_freq_prob(prev = 1,  sens = 8,  spec = 1,  100)   # => NAs + warning (sens & spec beyond range)

## (B) Compute probabilities from (3 essential) probabilities: ----------

## Note: comp_prob_prob is a WRAPPER function for the more basic
##       comp_prob(...) defined before!

## comp_prob_prob: Documentation ------

#' Compute probabilities from (3 essential) probabilities.
#'
#' \code{comp_prob_prob} computes current probability information
#' from a sufficient and valid set of 3 essential probabilities
#' \code{\link{sens}} or its complement \code{\link{mirt}}, and
#' It returns a list of 11 probabilities (\code{\link{prob}})
#' as its output.
#'
#' \code{comp_prob_prob} is a wrapper function for the more basic
#'
#' Extreme probabilities (sets containing 2 or more
#' probabilities of 0 or 1) may yield unexpected values
#' (e.g., predictive values \code{\link{PPV}} or \code{\link{NPV}}
#' turning \code{NaN} when \code{\link{is_extreme_prob_set}}
#' evaluates to \code{TRUE}).
#'
#'
#' Key relationships between frequencies and probabilities
#' (see documentation of \code{\link{comp_freq}} or \code{\link{comp_prob}} for details):
#'
#' \itemize{
#'
#'   \item Three perspectives on a population:
#'
#'   by condition / by decision / by accuracy.
#'
#'   \item Defining probabilities in terms of frequencies:
#'
#'   Probabilities can be computed as ratios between frequencies, but beware of rounding issues.
#'
#' }
#'
#'
#' Functions translating between representational formats:
#'
#' \enumerate{
#'
#'    \item \code{comp_prob_prob} (defined here) is
#'    a wrapper function for \code{\link{comp_prob}} and
#'    an analog to 3 other format conversion functions:
#'
#'    \item \code{\link{comp_prob_freq}} computes
#'    current \emph{probability} information contained in \code{\link{prob}}
#'    from 4 essential frequencies
#'
#'    \item \code{\link{comp_freq_prob}} computes
#'    current \emph{frequency} information contained in \code{\link{freq}}
#'    from 3 essential probabilities
#'
#'    \item \code{\link{comp_freq_freq}} computes
#'    current \emph{frequency} information contained in \code{\link{freq}}
#'    from 4 essential frequencies
#'
#'  }
#'
#' @param prev The condition's prevalence value \code{\link{prev}}
#' (i.e., the probability of condition being \code{TRUE}).
#'
#' @param sens The decision's sensitivity value \code{\link{sens}}
#' (i.e., the conditional probability of a positive decision
#' provided that the condition is \code{TRUE}).
#' \code{sens} is optional when its complement \code{\link{mirt}} is provided.
#'
#' @param mirt The decision's miss rate value \code{\link{mirt}}
#' (i.e., the conditional probability of a negative decision
#' provided that the condition is \code{TRUE}).
#' \code{mirt} is optional when its complement \code{\link{sens}} is provided.
#'
#' @param spec The decision's specificity value \code{\link{spec}}
#' (i.e., the conditional probability
#' of a negative decision provided that the condition is \code{FALSE}).
#' \code{spec} is optional when its complement \code{\link{fart}} is provided.
#'
#' @param fart The decision's false alarm rate \code{\link{fart}}
#' (i.e., the conditional probability
#' of a positive decision provided that the condition is \code{FALSE}).
#' \code{fart} is optional when its complement \code{\link{spec}} is provided.
#'
#' @param tol A numeric tolerance value for \code{\link{is_complement}}.
#' Default: \code{tol = .01}.
#'
#' @return A list \code{\link{prob}} containing 11 probability values.
#'
#' @examples
#' # Basics:
#' comp_prob_prob(prev = .11, sens = .88, spec = .77)                        # => ok: PPV = 0.3210614
#' comp_prob_prob(prev = .11, sens = NA, mirt = .12, spec = NA, fart = .23)  # => ok: PPV = 0.3210614
#' comp_prob_prob()          # => ok, using current defaults
#' length(comp_prob_prob())  # => 11 probabilities
#'
#' # Ways to work:
#' comp_prob_prob(.99, sens = .99, spec = .99)              # => ok: PPV = 0.999898
#' comp_prob_prob(.99, sens = .90, spec = NA, fart = .10)   # => ok: PPV = 0.9988789
#'
#' # Watch out for extreme cases:
#' comp_prob_prob(1, sens = 0, spec = 1)      # => ok, but with warnings (as PPV & FDR are NaN)
#' comp_prob_prob(1, sens = 0, spec = 0)      # => ok, but with warnings (as PPV & FDR are NaN)
#' comp_prob_prob(1, sens = 0, spec = NA, fart = 0)  # => ok, but with warnings (as PPV & FDR are NaN)
#' comp_prob_prob(1, sens = 0, spec = NA, fart = 1)  # => ok, but with warnings (as PPV & FDR are NaN)
#'
#' comp_prob_prob(1, sens = 1, spec = 0)      # => ok, but with warnings (as NPV & FOR are NaN)
#' comp_prob_prob(1, sens = 1, spec = 1)      # => ok, but with warnings (as NPV & FOR are NaN)
#' comp_prob_prob(1, sens = 1, spec = NA, fart = 0)  # => ok, but with warnings (as NPV & FOR are NaN)
#' comp_prob_prob(1, sens = 1, spec = NA, fart = 1)  # => ok, but with warnings (as NPV & FOR are NaN)
#'
#' # Ways to fail:
#' comp_prob_prob(NA, 1, 1, NA)  # => only warning: invalid set (prev not numeric)
#' comp_prob_prob(8,  1, 1, NA)  # => only warning: prev no probability
#' comp_prob_prob(1,  8, 1, NA)  # => only warning: sens no probability
#' comp_prob_prob(1,  1, 1,  1)  # => only warning: is_complement not in tolerated range
#'
#' @family functions computing frequencies
#' @family format conversion functions
#'
#' @seealso
#' \code{\link{comp_freq_prob}} computes current frequency information from (3 essential) probabilities;
#' \code{\link{comp_freq_freq}} computes current frequency information from (4 essential) frequencies;
#' \code{\link{comp_prob_freq}} computes current probability information from (4 essential) frequencies;
#' \code{\link{num}} contains basic numeric variables;
#' \code{\link{init_num}} initializes basic numeric variables;
#' \code{\link{freq}} contains current frequency information;
#' \code{\link{comp_freq}} computes current frequency information;
#' \code{\link{prob}} contains current probability information;
#' \code{\link{comp_prob}} computes current probability information;
#' \code{\link{comp_complement}} computes a probability's complement;
#' \code{\link{comp_comp_pair}} computes pairs of complements;
#' \code{\link{comp_complete_prob_set}} completes valid sets of probabilities;
#' \code{\link{comp_min_N}} computes a suitable population size \code{\link{N}} (if missing).
#'
#' @export

## comp_prob_prob: Definition ------

comp_prob_prob <- function(prev = prob$prev, # probabilities: 3 essential (prev; sens, spec) sens = prob$sens, mirt = NA,  #                2 optional  (      mirt, fart)
spec = prob\$spec, fart = NA,  # Defaults: Values currently contained in prob!
tol = .01                     # tolerance for is_complement
) {

## Pass on / wrapper function:
## Delegate to existing and more basic function,
## but note that comp_prob verifies the integrity of probabilities provided
## by checking is_valid_prob_set():

prob <- comp_prob(prev,        # probabilities:
sens, mirt,  # 3 essential (prev, sens, spec)
spec, fart,  # 2 optional  (      mirt, fart)
tol = tol    # tolerance for is_complement
)

## Return entire list prob:
return(prob)

}

## Check: ------

# Basics:
# comp_prob_prob(prev = .11, sens = .88, spec = .77)                        # => ok: PPV = 0.3210614
# comp_prob_prob(prev = .11, sens = NA, mirt = .12, spec = NA, fart = .23)  # => ok: PPV = 0.3210614
# comp_prob_prob()          # => ok, using current defaults
# length(comp_prob_prob())  # => 11 probabilities
#
# # Ways to work:
# comp_prob_prob(.99, sens = .99, spec = .99)              # => ok: PPV = 0.999898
# comp_prob_prob(.99, sens = .90, spec = NA, fart = .10)   # => ok: PPV = 0.9988789
#
# # Watch out for extreme cases:
# comp_prob_prob(1, sens = 0, spec = 1)      # => ok, but with warnings (as PPV & FDR are NaN)
# comp_prob_prob(1, sens = 0, spec = 0)      # => ok, but with warnings (as PPV & FDR are NaN)
# comp_prob_prob(1, sens = 0, spec = NA, fart = 0)  # => ok, but with warnings (as PPV & FDR are NaN)
# comp_prob_prob(1, sens = 0, spec = NA, fart = 1)  # => ok, but with warnings (as PPV & FDR are NaN)
#
# comp_prob_prob(1, sens = 1, spec = 0)      # => ok, but with warnings (as NPV & FOR are NaN)
# comp_prob_prob(1, sens = 1, spec = 1)      # => ok, but with warnings (as NPV & FOR are NaN)
# comp_prob_prob(1, sens = 1, spec = NA, fart = 0)  # => ok, but with warnings (as NPV & FOR are NaN)
# comp_prob_prob(1, sens = 1, spec = NA, fart = 1)  # => ok, but with warnings (as NPV & FOR are NaN)
#
# # Ways to fail:
# comp_prob_prob(NA, 1, 1, NA)  # => only warning: invalid set (prev not numeric)
# comp_prob_prob(8,  1, 1, NA)  # => only warning: prev no probability
# comp_prob_prob(1,  8, 1, NA)  # => only warning: sens no probability
# comp_prob_prob(1,  1, 1,  1)  # => only warning: is_complement not in tolerated range

## (*) Done: -----------

## - Clean up code [2018 08 30].

## (+) ToDo: ----------

## - ...

## eof. ------------------------------------------


## Try the riskyr package in your browser

Any scripts or data that you put into this service are public.

riskyr documentation built on Jan. 3, 2019, 1:06 a.m.