| marginal_mean | R Documentation |
Calculate the marginal mean
marginal_mean(times, positions, thetas, marginals = NULL, burnin = 1)
times |
Vector of event times from the PDMP trajectory |
positions |
Matrix of positions from the PDMP trajectory, each column should correspond to a position |
thetas |
Matrix of PDMP velocities |
marginals |
Vector of indices to calculate the marginal means. |
burnin |
Number of events to use as burnin |
Returns the posterior mean of the parameter estimated using the PDMP trajectories.
generate.logistic.data <- function(beta, n.obs, Sig) {
p <- length(beta)
dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
vals <- dataX %*% as.vector(beta)
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX = dataX, dataY = dataY))
}
n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)
## Not run:
b <- marginal_mean(zigzag_fit$times, zigzag_fit$positions, zigzag_fit$theta, marginals=1:p)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.