model_probabilities | R Documentation |
Calculate either marginal probabilities of inclusions or posterior probabilities of specific models.
model_probabilities(times, thetas, models = NULL, marginals = NULL, burnin = 1)
times |
Vector of event times from the PDMP trajectory |
thetas |
Matrix of velocities from the PDMP trajectory, each column should correspond to a velocities |
models |
Optional Matrix of indicies where rows correspond to models. Will return probabilities of each model |
marginals |
Optional Vector of indices to calculate the marginal probabilities of inclusion. Will return probabilities of inclusion for variable index |
burnin |
Number of events to use as burnin |
Returns a list with the following objects:
prob_mod
: Vector of posterior model probabilities based on the PDMP trajectories
marginal_prob
: Vector of marginal probabilities for inclusion
generate.logistic.data <- function(beta, n.obs, Sig) { p <- length(beta) dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig) vals <- dataX %*% as.vector(beta) generateY <- function(p) { rbinom(1, 1, p)} dataY <- sapply(1/(1 + exp(-vals)), generateY) return(list(dataX = dataX, dataY = dataY)) } n <- 15 p <- 25 beta <- c(1, rep(0, p-1)) Siginv <- diag(1,p,p) Siginv[1,2] <- Siginv[2,1] <- 0.9 set.seed(1) data <- generate.logistic.data(beta, n, solve(Siginv)) ppi <- 2/p zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY, prior_sigma2 = 10,theta0 = rep(0, p), x0 = rep(0, p), rj_val = 0.6, ppi = ppi) ## Not run: a <- models_visited(zigzag_fit$theta) # Work out probability of top 10 most visited models and all marginal inclusion probabilities # specific model probabilities become trivially small for large dimensions b <- model_probabilities(zigzag_fit$times, zigzag_fit$thetas, models = a[1:10,1:p], marginals=1:p) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.