| plot_pdmp_multiple | R Documentation |
Plots to compare PDMP samplers and optionally MCMC samples.
plot_pdmp_multiple( list_pdmp, coords = 1:2, inds = 1:10^3, nsamples = 10^3, burn = 0.1, mcmc_samples = NULL, pch = 20, cols = NULL )
list_pdmp |
List of PDMP sampler trajectories to plot |
coords |
Vector of coordinates to plot the marginal and joint distributions |
inds |
Vector of indices of the PDMP trajectories to plot. |
nsamples |
Number of samples to generate and use for marginal density estimates of the PDMP methods |
burn |
Percentage of events to use as burn-in. Should be between 0 and 1, default 0.1. |
mcmc_samples |
Optional Matrix of samples from an MCMC method. Each row should be a sample. |
pch |
The graphics parameter for off diagonal plots. Default is 20. |
cols |
Colours to be used for plotting the PDMPs and MCMC samples (in order). |
Generates a plot of the marginal density on the diagonal and pairs plots of the trajectories
generate.logistic.data <- function(beta, n.obs, Sig) {
p <- length(beta)
dataX <- MASS::mvrnorm(n=n.obs,mu=rep(0,p),Sigma=Sig)
vals <- dataX %*% as.vector(beta)
generateY <- function(p) { rbinom(1, 1, p)}
dataY <- sapply(1/(1 + exp(-vals)), generateY)
return(list(dataX = dataX, dataY = dataY))
}
n <- 15
p <- 25
beta <- c(1, rep(0, p-1))
Siginv <- diag(1,p,p)
Siginv[1,2] <- Siginv[2,1] <- 0.9
set.seed(1)
data <- generate.logistic.data(beta, n, solve(Siginv))
ppi <- 2/p
zigzag_fit <- zigzag_logit(maxTime = 1, dataX = data$dataX,datay =data$dataY,
prior_sigma2 = 10,theta0 = rep(0, p),
x0 = rep(0, p), rj_val = 0.6,
ppi = ppi)
## Not run:
bps_fit <- bps_n_logit(maxTime = 1, dataX = data$dataX, datay = data$dataY,
prior_sigma2 = 10, theta0 = rep(0, p), x0 = rep(0, p),
ref = 0.1, rj_val = 0.6,ppi = ppi)
plot_pdmp_multiple(list(zz=zigzag_fit,bps=bps_fit), coords = 1:2, inds = 1:10^3,
nsamples = 1e4, burn = .1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.