rknn: Random KNN Classification and Regression

Random knn classification and regression are implemented. Random knn based feature selection methods are also included. The approaches are mainly developed for high-dimensional data with small sample size.

AuthorShengqiao Li <lishengqiao@yahoo.com>
Date of publication2015-06-09 00:14:51
MaintainerShengqiao Li <lishengqiao@yahoo.com>
LicenseGPL (>= 2)
Version1.2-1

View on CRAN

Functions

backward.rknn.cv Man page
bestset Man page
confusion Man page
confusion2acc Man page
cv.coef Man page
eta Man page
fitted.rknn Man page
knn Man page
knn.cv Man page
knn.reg Man page
kpart Man page
kspart Man page
lambda Man page
normalize.decscale Man page
normalize.sigmoidal Man page
normalize.softmax Man page
normalize.unit Man page
plot.rknnBeg Man page
plot.rknnBel Man page
plot.rknnSupport Man page
prebestset Man page
predicted Man page
PRESS Man page
pressresid Man page
print.rknn Man page
print.rknnBE Man page
print.rknnSupport Man page
r Man page
rbyb Man page
rbylambda Man page
rbyp Man page
rbyv Man page
rbyz Man page
rbyz.geo Man page
rbyz.sim Man page
rknn Man page
rknnBeg Man page
rknnBel Man page
rknn.cv Man page
rknn.kf.xcv Man page
rknn-package Man page
rknn.pxcv Man page
rknnReg Man page
rknnRegSupport Man page
rknnSupport Man page
rknn.xcv Man page
rsqp Man page
varNotUsed Man page
varUsed Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.