Description Details Author(s) References

Random KNN Classification and Regression

Package: | rknn |

Type: | Package |

Version: | 1.1 |

Date: | 2013-08-05 |

Depends: | R (>= 2.15.0), gmp |

Suggests: | Hmisc, Biobase, genefilter, golubEsets, chemometrics |

Imports: | class, FNN |

License: | GPL (>=2) |

LazyLoad: | yes |

Packaged: | 2013-08-5 |

Index:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ```
PRESS Predicted Residual Sum of Squares
begKNN Backward Elimination Feature Selection with
Random KNN
bestset Extract the best subset of feature from
selection process
confusion Classification Confusion Matrix and Accuracy
cv.coef Coefficient of Variation
eta Coverage Probability
fitted.randomKNN Extract Model Fitted Values
knn.reg KNN Regression
knn.reg.cv KNN Regression Cross-Validation
lambda Compute Number of Silent Features
normalize.decscale Data Normalization
plot.begKNN Plot Function for Recursive Backward
Elimination Feature Selection
plot.supportRKNN Plot Function for Support Criterion
predicted Prediced Value From a Linear Model
print.KNNregcv Print Method for KNN Regression
Cross-validation
print.beKNN Print Method for Recursive Backward Elimination
Feature Selection
print.randomKNN Print method for Random KNN regression
cross-validation
print.supportRKNN Print Method for Random KNN Support Criterion
r Choose number of KNNs
randomKNN Random KNN Classification and Regression
rknn-package Random KNN Classification and Regression
rsqp Predicted R-square
supportRKNN Support Criterion
varUsed Features Used or Not Used in Random KNN
``` |

Shengqiao Li

Maintainer: Shengqiao Li <[email protected]>

Shengqiao Li, E James Harner and Donald A Adjeroh.
*Random KNN feature selection - a fast and stable alternative to Random Forests.*
BMC Bioinformatics 2011, 12:450. http://www.biomedcentral.com/1471-2105/12/450

rknn documentation built on May 30, 2017, 3:33 a.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.