Nothing
#' Univariate kernel density
#'
#' @param x.obs Training (observed) data (n1 vector)
#' @param x.new Evaluation data (n2 vector); default to x.obs
#' @param h Bandwidth
#'
#' @return Density evaluated at x.new
#' @export
#'
#'
#' @author Ximing Wu \email{xwu@@tamu.edu}
#' @references Wu, Ximing (2019), "Robust Likelihood Cross Validation for Kernel Density Estimation," Journal of Business and Economic Statistics, 37(4): 761-770.
#'
#' @examples
#' x=rnorm(100)
#' x.new=seq(-5,5,length=50)
#' h=1.06*sd(x)*(length(x))^(-1/5)
#' f=kde(x.new=x.new,x.obs=x,h=h)
kde <- function(x.obs,x.new=NULL,h) {
# x.new: evaluation data
# x.obs: observations
if (is.null(x.new))
x.new=x.obs
f=rowMeans(outer(x.new,x.obs,function(p,q) stats::dnorm((p-q)/h)/h))
return(f)
}
kde_i=function(x,h)
{ # kde, leave one out
n=length(x)
df=outer(x,x,'-')
id=1:n
id1=outer(id,id,'-')
id1=matrix(id1,ncol=1)
df1=matrix(df,ncol=1)
df2=df1[id1!=0]
df2=matrix(df2,nrow=n-1)
f=colMeans(stats::dnorm(df2/h)/h)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.