Description Usage Arguments Value Note Author(s) See Also Examples
Computes the individual odds ratio or relative risk, the
Mantel-Haenszel summary, and Woolf's test for heterogeneity. The
print
method gives the summary and test for heterogeneity; the
summary
method also gives all the individual odds ratios and
confidence intervals.
The plot
method draws a standard meta-analysis plot. The
confidence interval for each study is given by a horizontal line, and
the point estimate is given by a square whose height is inversely
proportional to the standard error of the estimate. The summary odds
ratio, if requested, is drawn as a diamond with horizontal limits at the
confidence limits and width inversely proportional to its standard
error.
1 2 3 4 5 6 7 | meta.MH(ntrt, nctrl, ptrt, pctrl, conf.level=0.95,
names=NULL, data=NULL, subset=NULL, na.action = na.fail,statistic="OR")
## S3 method for class 'meta.MH'
summary(object, conf.level=NULL, ...)
## S3 method for class 'meta.MH'
plot(x, summary=TRUE, summlabel="Summary",
conf.level=NULL, colors=meta.colors(),xlab=NULL, ...)
|
ntrt |
Number of subjects in treated/exposed group |
nctrl |
Number of subjects in control group |
ptrt |
Number of events in treated/exposed group |
pctrl |
Number of events in control group |
names |
names or labels for studies |
data |
data frame to interpret variables |
subset |
subset of studies to include |
na.action |
a function which indicates what should happen when
the data contain |
statistic |
"OR" for odds ratio, "RR" for relative risk |
x,object |
a |
summary |
Plot the summary odds ratio? |
summlabel |
Label for the summary odds ratio |
conf.level |
Coverage for confidence intervals |
colors |
see |
xlab |
x-axis label, default is based on |
... |
further arguments to be passed to or from methods. |
An object of class meta.MH
with print
, plot
, funnelplot
and
summary
methods.
There are at least two other ways to do a fixed effects meta-analysis of binary data. Peto's method is a computationally simpler approximation to the Mantel-Haenszel approach. It is also possible to weight the individual odds ratios according to their estimated variances. The Mantel-Haenszel method is superior if there are trials with small numbers of events (less than 5 or so in either group)
Thomas Lumley
1 2 3 4 5 6 7 8 9 10 11 12 | data(catheter)
a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
a
summary(a)
plot(a)
d <- meta.MH(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,
names=Name, subset=c(13,6,3,12,4,11,1,14,8,10,2))
d
summary(d)
## plot with par("fg")
plot(d, colors=meta.colors(NULL))
|
Fixed effects ( Mantel-Haenszel ) Meta-Analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = col.trt, pctrl = col.ctrl,
names = Name, data = catheter, subset = c(13, 6, 5, 3, 7,
12, 4, 11, 1, 8, 10, 2))
Mantel-Haenszel OR =0.44 95% CI ( 0.36, 0.54 )
Test for heterogeneity: X^2( 10 ) = 25.36 ( p-value 0.0047 )
Fixed effects ( Mantel-Haenszel ) meta-analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = col.trt, pctrl = col.ctrl,
names = Name, data = catheter, subset = c(13, 6, 5, 3, 7,
12, 4, 11, 1, 8, 10, 2))
------------------------------------
OR (lower 95% upper)
Tennenberg 0.22 0.10 0.49
Maki 0.49 0.29 0.82
vanHeerden 0.27 0.07 1.00
Hannan 0.83 0.40 1.72
Bach(a) NaN 0.00 NaN
Bach(b) 0.11 0.02 0.49
Heard 0.60 0.38 0.95
Collins 0.10 0.02 0.41
Ciresi 0.69 0.34 1.42
Ramsay 0.58 0.37 0.92
Trazzera 0.47 0.23 0.94
George 0.12 0.04 0.33
------------------------------------
Mantel-Haenszel OR =0.44 95% CI ( 0.36,0.54 )
Test for heterogeneity: X^2( 10 ) = 25.36 ( p-value 0.0047 )
Fixed effects ( Mantel-Haenszel ) Meta-Analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = inf.trt, pctrl = inf.ctrl,
names = Name, data = catheter, subset = c(13, 6, 3, 12, 4,
11, 1, 14, 8, 10, 2))
Mantel-Haenszel OR =0.56 95% CI ( 0.37, 0.84 )
Test for heterogeneity: X^2( 9 ) = 5.32 ( p-value 0.8056 )
Fixed effects ( Mantel-Haenszel ) meta-analysis
Call: meta.MH(ntrt = n.trt, nctrl = n.ctrl, ptrt = inf.trt, pctrl = inf.ctrl,
names = Name, data = catheter, subset = c(13, 6, 3, 12, 4,
11, 1, 14, 8, 10, 2))
------------------------------------
OR (lower 95% upper)
Tennenberg 0.57 0.19 1.75
Maki 0.20 0.04 0.94
Hannan 0.60 0.18 2.00
Bach(b) NaN 0.00 NaN
Heard 0.86 0.26 2.89
Collins 0.35 0.04 3.16
Ciresi 0.95 0.43 2.10
Pemberton 0.82 0.13 5.24
Ramsay 0.23 0.03 2.11
Trazzera 0.63 0.17 2.42
George 0.25 0.02 2.50
------------------------------------
Mantel-Haenszel OR =0.56 95% CI ( 0.37,0.84 )
Test for heterogeneity: X^2( 9 ) = 5.32 ( p-value 0.8056 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.