Nothing
#'
#' @title Coefficients for robStepSplitReg Object
#'
#' @description \code{coef.robStepSplitReg} returns the coefficients for a robStepSplitReg object.
#'
#' @method coef robStepSplitReg
#'
#' @param object An object of class robStepSplitReg
#' @param group_index Groups included in the ensemble. Default setting includes all the groups.
#' @param ... Additional arguments for compatibility.
#'
#' @return The coefficients for the robStepSplitReg object.
#'
#' @export
#'
#' @author Anthony-Alexander Christidis, \email{anthony.christidis@stat.ubc.ca}
#'
#' @seealso \code{\link{robStepSplitReg}}
#'
#' @examples
#' # Required library
#' library(mvnfast)
#'
#' # Simulation parameters
#' n <- 50
#' p <- 500
#' rho <- 0.5
#' p.active <- 100
#' snr <- 1
#' contamination.prop <- 0.2
#'
#' # Setting the seed
#' set.seed(0)
#'
#' # Simulation of beta vector
#' true.beta <- c(runif(p.active, 0, 5)*(-1)^rbinom(p.active, 1, 0.7), rep(0, p - p.active))
#'
#' # Simulation of uncontaminated data
#' sigma.mat <- matrix(0, nrow = p, ncol = p)
#' sigma.mat[1:p.active, 1:p.active] <- rho
#' diag(sigma.mat) <- 1
#' x <- mvnfast::rmvn(n, mu = rep(0, p), sigma = sigma.mat)
#' sigma <- as.numeric(sqrt(t(true.beta) %*% sigma.mat %*% true.beta)/sqrt(snr))
#' y <- x %*% true.beta + rnorm(n, 0, sigma)
#'
#' # Contamination of data
#' contamination_indices <- 1:floor(n*contamination.prop)
#' k_lev <- 2
#' k_slo <- 100
#' x_train <- x
#' y_train <- y
#' beta_cont <- true.beta
#' beta_cont[true.beta!=0] <- beta_cont[true.beta!=0]*(1 + k_slo)
#' beta_cont[true.beta==0] <- k_slo*max(abs(true.beta))
#' for(cont_id in contamination_indices){
#'
#' a <- runif(p, min = -1, max = 1)
#' a <- a - as.numeric((1/p)*t(a) %*% rep(1, p))
#' x_train[cont_id,] <- mvnfast::rmvn(1, rep(0, p), 0.1^2*diag(p)) +
#' k_lev * a / as.numeric(sqrt(t(a) %*% solve(sigma.mat) %*% a))
#' y_train[cont_id] <- t(x_train[cont_id,]) %*% beta_cont
#' }
#'
#' # Ensemble models
#' ensemble_fit <- robStepSplitReg(x_train, y_train,
#' n_models = 5,
#' model_saturation = c("fixed", "p-value")[1],
#' alpha = 0.05, model_size = n - 1,
#' robust = TRUE,
#' compute_coef = TRUE,
#' en_alpha = 1/4)
#'
#' # Ensemble coefficients
#' ensemble_coefs <- coef(ensemble_fit, group_index = 1:ensemble_fit$n_models)
#' sens_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/p.active
#' spec_ensemble <- sum(which((ensemble_coefs[-1]!=0)) <= p.active)/sum(ensemble_coefs[-1]!=0)
#'
#' # Simulation of test data
#' m <- 2e3
#' x_test <- mvnfast::rmvn(m, mu = rep(0, p), sigma = sigma.mat)
#' y_test <- x_test %*% true.beta + rnorm(m, 0, sigma)
#'
#' # Prediction of test samples
#' ensemble_preds <- predict(ensemble_fit, newx = x_test,
#' group_index = 1:ensemble_fit$n_models,
#' dynamic = FALSE)
#' mspe_ensemble <- mean((y_test - ensemble_preds)^2)/sigma^2
#'
coef.robStepSplitReg <- function(object, group_index = NULL, ...){
if(is.null(group_index)){
final_coef <- numeric(ncol(object$x) + 1)
for(model.ind in 1:object$n_models)
final_coef <- final_coef + c(object$intercepts[[model.ind]], object$coefficients[[model.ind]]) / object$n_models
return(as.numeric(final_coef))
} else{
if(any(!(group_index %in% 1:object$n_models)))
stop("The group index is invalid.")
final_coef <- numeric(ncol(object$x) + 1)
for(model.ind in group_index)
final_coef <- final_coef + c(object$intercepts[[model.ind]], object$coefficients[[model.ind]]) / length(group_index)
return(as.numeric(final_coef))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.