rocNIT: Non-Inferiority Test for Paired ROC Curves

Description Usage Arguments Value Note Author(s) See Also Examples

View source: R/rocNIT.R

Description

Non-inferiority test and diagnostic test are very important in clinical trails. This package is to get a p value of the non-inferiority test for ROC curves from diagnostic test using the bootstrap method.

Usage

1
rocNIT(BNO,DATA,cVAL1,cVAL2,cGOLD,DELTA,ALPHA,seed)

Arguments

BNO

the times of the sampling of bootstrap

DATA

the dataset including 3 variables at least: VAL1,VAL2,GOLD

cVAL1

the column number of the first numeric variable

cVAL2

the column number of the second numeric variable

cGOLD

the column number of the golden variable which should be binary

DELTA

the non-inferiority margin, default is 0.05

ALPHA

the significant level, default is 0.05

seed

the seed for the sampling of bootstrap, default is 2016

Value

AREA1

the AUC for the first variable

AREASE1

the SE of the AUC for the first variable

AREA2

the AUC for the second variable

AREASE2

the SE of the AUC for the second variable

bCIL

the lower limit of CI from bootstrap sampling

bCIU

the upper limit of CI from bootstrap sampling

Z

the statistic to get the p value

P

the p value of the non-inferiority test, P < ALPHA means a significant non-inferiority

Note

Referenced from Jen-Pei Liu et al. Tests of equivalence and non-inferiority for diagnostic accuracy based on the paired areas under ROC curves. STATISTICS IN MEDICINE. DOI: 10.1002/sim.2358

Author(s)

Zhicheng Du<[email protected]>, Yuantao Hao<[email protected]>

See Also

nothing

Examples

1
2
3
4
5
VAL1=c(rnorm(50,mean=0),rnorm(50,mean=0)+0.5)
VAL2=c(rnorm(50,mean=0),rnorm(50,mean=0)+1)
GOLD=rep(1:2,each=50)
data=data.frame(GOLD,VAL1,VAL2)
rocNIT(BNO=200,DATA=data,cVAL1=2,cVAL2=3,cGOLD=1,DELTA=0.05,ALPHA=0.05,seed=2016)

Example output

      AREA1    AREASE1     AREA2    AREASE2       bCIL      bCIU        Z
1 0.3079287 0.05007109 0.2683818 0.04556233 -0.1753056 0.4072741 1.558175
           P
1 0.05959588

rocNIT documentation built on May 29, 2017, 4:30 p.m.