Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo = FALSE, message=FALSE---------------------------------------
library(rolap)
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(ft, split.table = Inf)
## -----------------------------------------------------------------------------
library(rolap)
ft_num <- ft |>
dplyr::mutate(`Pneumonia and Influenza Deaths` = as.integer(`Pneumonia and Influenza Deaths`)) |>
dplyr::mutate(`All Deaths` = as.integer(`All Deaths`))
ft_age <- ft |>
dplyr::select(-`Pneumonia and Influenza Deaths`,-`All Deaths`) |>
tidyr::gather("Age", "All Deaths", 7:11) |>
dplyr::mutate(`All Deaths` = as.integer(`All Deaths`)) |>
dplyr::mutate(Age = stringr::str_replace(Age, " \\(all cause deaths\\)", ""))
## ----results = "asis", echo = FALSE-------------------------------------------
pander::pandoc.table(head(ft_age, 15), split.table = Inf)
## -----------------------------------------------------------------------------
dput(colnames(ft_num))
dput(colnames(ft_age))
## -----------------------------------------------------------------------------
s <- star_schema()
## -----------------------------------------------------------------------------
# definition 1
when <- dimension_schema(name = "When",
attributes = c("Year",
"WEEK"))
s_age <- star_schema() |>
define_dimension(when)
# definition 2
s_age <- star_schema() |>
define_dimension(name = "When",
attributes = c("Year",
"WEEK"))
## -----------------------------------------------------------------------------
# definition 1
mrs_cause <- fact_schema(name = "MRS Cause",
measures = c("Pneumonia and Influenza Deaths",
"All Deaths"))
s_cause <- star_schema() |>
define_facts(mrs_cause)
# definition 2
s_cause <- star_schema() |>
define_facts(name = "MRS Cause",
measures = c("Pneumonia and Influenza Deaths",
"All Deaths"))
## -----------------------------------------------------------------------------
s_cause <- star_schema() |>
define_facts(name = "MRS Cause",
measures = c("Pneumonia and Influenza Deaths",
"All Deaths"),
agg_functions = c("MAX", "SUM"),
nrow_agg = "Num"
)
## -----------------------------------------------------------------------------
s_cause <- star_schema() |>
define_facts(name = "MRS Cause",
measures = c("Pneumonia and Influenza Deaths",
"All Deaths"),
nrow_agg = "Num") |>
define_dimension(name = "When",
attributes = c("Year",
"WEEK",
"Week Ending Date")) |>
define_dimension(name = "Where",
attributes = c("REGION",
"State",
"City"))
## -----------------------------------------------------------------------------
db_cause <- star_database(s_cause, ft_num)
## -----------------------------------------------------------------------------
l_cause <- db_cause |>
snake_case() |>
as_tibble_list()
## ----results = "asis", echo = FALSE-------------------------------------------
for (i in 1:length(l_cause)) {
pander::pandoc.table(l_cause[[i]], split.table = Inf)
}
## -----------------------------------------------------------------------------
nrow(ft_num)
nrow(l_cause[[3]])
## -----------------------------------------------------------------------------
when <- dimension_schema(name = "When",
attributes = c("Year"))
where <- dimension_schema(name = "Where",
attributes = c("State",
"City"))
s_cause <- star_schema() |>
define_facts(name = "MRS Cause",
measures = c("Pneumonia and Influenza Deaths",
"All Deaths")) |>
define_dimension(when) |>
define_dimension(where)
ft_num2 <- ft_num |>
dplyr::filter(Year > "1962") |>
dplyr::filter(City == "Boston" | City == "Bridgeport")
db_cause <- star_database(s_cause, ft_num2) |>
snake_case()
l_cause <- db_cause |>
as_tibble_list()
## ----results = "asis", echo = FALSE-------------------------------------------
for (i in 1:length(l_cause)) {
pander::pandoc.table(l_cause[[i]], split.table = Inf)
}
## -----------------------------------------------------------------------------
s_age <- star_schema() |>
define_facts(name = "MRS Age",
measures = c("All Deaths")) |>
define_dimension(when) |>
define_dimension(where) |>
define_dimension(name = "Who",
attributes = c("Age"))
ft_age2 <- ft_age |>
dplyr::filter(Year < "1964") |>
dplyr::filter(City != "Boston" & City != "Bridgeport")
db_age <- star_database(s_age, ft_age2) |>
snake_case()
l_age <- db_age |>
as_tibble_list()
## ----results = "asis", echo = FALSE-------------------------------------------
for (i in 1:length(l_age)) {
pander::pandoc.table(l_age[[i]], split.table = Inf)
}
## ----example5-----------------------------------------------------------------
ct <- constellation("MRS", db_cause, db_age)
## ----example6-----------------------------------------------------------------
lc <- ct |>
as_tibble_list()
## ----results = "asis", echo = FALSE-------------------------------------------
for (i in 1:length(lc)) {
pander::pandoc.table(lc[[i]], split.table = Inf)
}
## -----------------------------------------------------------------------------
s_age2 <- star_schema() |>
define_facts(name = "MRS Age 2",
measures = c("All Deaths")) |>
define_dimension(when) |>
define_dimension(where) |>
define_dimension(name = "Who",
attributes = c("Age"))
db_age2 <- star_database(s_age2, ft_age) |>
snake_case()
## -----------------------------------------------------------------------------
ct2 <- constellation("MRS2", ct, db_age2)
## -----------------------------------------------------------------------------
db_cause |>
as_tibble_list()
## -----------------------------------------------------------------------------
ct |>
as_tibble_list()
## -----------------------------------------------------------------------------
# star database
db_cause_dm <- db_cause |>
as_dm_class()
class(db_cause_dm)
db_cause_dm
## -----------------------------------------------------------------------------
# constellation
ct_dm <- ct |>
as_dm_class(pk_facts = TRUE)
class(ct_dm)
ct_dm
## -----------------------------------------------------------------------------
ct_dm |>
dm::dm_draw(rankdir = "LR", view_type = "all")
## -----------------------------------------------------------------------------
db <- DBI::dbConnect(RSQLite::SQLite())
ct_dm_db <- dm::copy_dm_to(db, ct_dm)
ct_dm_db
DBI::dbDisconnect(db)
## -----------------------------------------------------------------------------
db_cause |>
as_single_tibble_list()
## -----------------------------------------------------------------------------
ct |>
as_single_tibble_list()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.