Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
suppressPackageStartupMessages(library(dplyr))
suppressPackageStartupMessages(library(rollup))
## ----warning=FALSE, eval=FALSE------------------------------------------------
# # From CRAN
# install.packages("rollup")
#
# # From Github
# library(devtools)
# devtools::install_github("JuYoungAhn/rollup")
## ----warning=FALSE------------------------------------------------------------
mtcars %>% group_by(vs, am) %>% grouping_sets("vs","am",c("vs","am"), NA) %>%
summarize(n=n(), avg_mpg=mean(mpg))
mtcars %>% group_by(vs, am) %>% with_rollup() %>%
summarize(n=n(), avg_mpg=mean(mpg))
mtcars %>% group_by(vs, am) %>% with_cube() %>%
summarize(n=n(), avg_mpg=mean(mpg))
## ----setup--------------------------------------------------------------------
library(dplyr)
library(rollup)
data("web_service_data") # web_service_data of rollup package
web_service_data %>% head
## ----warning=FALSE------------------------------------------------------------
library(tidyr)
# compute average of `page_view_cnt` group by "gender", "age", and "gender & age", along with the overall average. NA in the output table represents overall aggregates.
web_service_data %>% filter(date_id == '2024-06-30' & gender != "N") %>%
group_by(gender, age) %>% grouping_sets('gender', 'age', c('gender','age'), NA) %>%
summarize(avg_pv_cnt = mean(page_view_cnt))
# compute average of `page_view_cnt` group by "gender & age & product_view_cnt_cat" along with the marginal average with regard to "product_view_cnt_cat".
web_service_data %>% filter(date_id == '2024-06-30' & gender != "N") %>%
group_by(gender, age, product_view_cnt_cat) %>%
grouping_sets('product_view_cnt_cat', c('product_view_cnt_cat', 'gender','age')) %>%
summarize(avg_pv_cnt = mean(page_view_cnt)) %>%
pivot_wider(names_from = product_view_cnt_cat, values_from = avg_pv_cnt)
## ----warning=FALSE------------------------------------------------------------
# This produces a table with average page view counts grouped by gender and age, including total aggregates across all combinations.
web_service_data %>% filter(date_id == '2024-06-30' & gender != "N") %>%
group_by(gender, age) %>% with_cube() %>%
summarize(avg_pv_cnt = mean(page_view_cnt)) %>%
pivot_wider(names_from = age, values_from = avg_pv_cnt)
## ----warning=FALSE------------------------------------------------------------
# The variables "age_big" and "age" have a hierarchy.
web_service_data_processed <- web_service_data %>% mutate(
age_big = case_when(
age %in% c(10,20,30) ~ 'young',
age %in% c(40,50,60) ~ 'old'
)
)
# If there are aggregates "age_big & age", marginal aggregates for "age" are not necessary.
# The following code computes aggregates for "age_big & age", "age_big", and entire data set.
web_service_data_processed %>% group_by(age_big, age) %>%
with_rollup() %>% summarize(
user_cnt = n_distinct(id),
avg_pv_cnt = mean(page_view_cnt)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.