estimators | R Documentation |
\boldsymbol\theta
Estimation of the axis of rotational symmetry
\boldsymbol{\theta}
of a rotational symmetric unit-norm
random vector \mathbf{X}
in
S^{p-1}:=\{\mathbf{x}\in R^p:||\mathbf{x}||=1\}
, p \ge 2
, from a
hyperspherical sample \mathbf{X}_1,\ldots,\mathbf{X}_n\in S^{p-1}
.
spherical_mean(data)
spherical_loc_PCA(data)
data |
hyperspherical data, a matrix of size |
The spherical_mean
estimator computes the sample mean of
\mathbf{X}_1,\ldots,\mathbf{X}_n
and normalizes it
by its norm (if the norm is different from zero). It estimates consistently
\boldsymbol{\theta}
for rotational symmetric models based on
angular functions g
that are
monotone increasing.
The estimator in spherical_loc_PCA
is based on the fact that, under
rotational symmetry, the expectation of
\mathbf{X}\mathbf{X}'
is
a\boldsymbol{\theta}\boldsymbol{\theta}' +
b(\mathbf{I}_p - \boldsymbol{\theta}\boldsymbol{\theta}')
for certain constants a,b \ge 0
. Therefore,
\boldsymbol{\theta}
is the eigenvector with unique
multiplicity of the expectation of \mathbf{X}\mathbf{X}'
. Its
use is recommended if the rotationally symmetric data is not unimodal.
A vector of length p
with an estimate for
\boldsymbol{\theta}
.
Eduardo García-Portugués, Davy Paindaveine, and Thomas Verdebout.
García-Portugués, E., Paindaveine, D., Verdebout, T. (2020) On optimal tests for rotational symmetry against new classes of hyperspherical distributions. Journal of the American Statistical Association, 115(532):1873–1887. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2019.1665527")}
# Sample from a vMF
n <- 200
p <- 10
theta <- c(1, rep(0, p - 1))
set.seed(123456789)
data <- r_vMF(n = n, mu = theta, kappa = 3)
theta_mean <- spherical_mean(data)
theta_PCA <- spherical_loc_PCA(data)
sqrt(sum((theta - theta_mean)^2)) # More efficient
sqrt(sum((theta - theta_PCA)^2))
# Sample from a mixture of antipodal vMF's
n <- 200
p <- 10
theta <- c(1, rep(0, p - 1))
set.seed(123456789)
data <- rbind(r_vMF(n = n, mu = theta, kappa = 3),
r_vMF(n = n, mu = -theta, kappa = 3))
theta_mean <- spherical_mean(data)
theta_PCA <- spherical_loc_PCA(data)
sqrt(sum((theta - theta_mean)^2))
sqrt(sum((theta - theta_PCA)^2)) # Better suited in this case
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.