rrecsys: Environment for Assessing Recommender Systems
Version 0.9.5.4

Provides implementations of several popular recommendation systems. They can process standard recommendation datasets (user/item matrix) as input and generate rating predictions and recommendation lists. Standard algorithm implementations included in this package are: Global/Item/User-Average baselines, Item-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology for recommender systems using measures such as MAE, RMSE, Precision, Recall, AUC, NDCG, RankScore and coverage measures. The package is intended for rapid prototyping of recommendation algorithms and education purposes.

AuthorLudovik Çoba [aut, cre, cph], Markus Zanker [ctb]
Date of publication2016-06-27 17:31:21
MaintainerLudovik Çoba <lcoba@unishk.edu.al>
LicenseGPL-3
Version0.9.5.4
URL https://github.com/ludovikcoba/rrecsys
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("rrecsys")

Popular man pages

BPRclass: Bayesian Personalized Ranking based model.
evalModel-class: Evaluation model.
evalPred: Evaluates the requested prediction algorithm.
nDCG: Normalized Discounted Cumulative Gain
rankScore: Rank Score
recommend: Generate recommendation.
rrecsys: Create a recommender system.
See all...

All man pages Function index File listing

Man pages

algAverageClass: Baseline algorithms exploiting global/item and user averages.
BPRclass: Bayesian Personalized Ranking based model.
dataSet-class: Dataset class.
defineData: Define dataset.
evalModel: Creating the evaluation model.
evalModel-class: Evaluation model.
evalPred: Evaluates the requested prediction algorithm.
evalrec: Evaluates the requested recommendation algorithm.
getAUC: Returns the Area under the ROC curve.
IBclass: Item based model.
mlLatest100k: Movielens Latest
nDCG: Normalized Discounted Cumulative Gain
PPLclass: Popularity based model.
predict: Generate predictions.
rankScore: Rank Score
recommend: Generate recommendation.
recResultsClass: Results of a recommendation.
rrecsys: Create a recommender system.
setStoppingCriteria: Set stopping criteria.
SVDclass: SVD model.
wALSclass: Weighted Alternating Least Squares based model.

Functions

BPR Source code
BPRclass Man page
BPRclass-class Man page
FunkSVD Source code
IB_kNN Source code
IBclass Man page
IBclass-class Man page
PPLclass Man page
PPLclass-class Man page
SVDclass Man page
SVDclass-class Man page
[,dataSet,ANY,ANY,missing-method Man page
[,recResultsClass,ANY,missing,missing-method Man page
algAverageClass Man page
algAverageClass-class Man page
calcBias Source code
coerce,dataSet,matrix-method Man page
colRatings Man page
colRatings,dataSet-method Man page
dataSet Man page
dataSet-class Man page
defineData Man page Source code
defineData,matrix-method Man page
dim,dataSet-method Man page
evalModel Man page
evalModel,dataSet-method Man page
evalModel-class Man page
evalPred Man page
evalPred,evalModel,list-method Man page
evalPred,evalModel-method Man page
evalRec Man page
evalRec,evalModel,list-method Man page
evalRec,evalModel-method Man page
getAUC Man page
getAUC,evalModel Man page
getAUC,evalModel-method Man page
getPrecRecall Source code
getiDCG Source code
getrankscoreMAX Source code
globalAverage Source code
isConverged Source code
itemAverage Source code
mlLatest100k Man page
mostpopular Source code
nDCG Man page Source code
ncol,dataSet-method Man page
nrow,dataSet-method Man page
numRatings Man page
numRatings,dataSet-method Man page
predict Man page
predict,BPRclass-method Man page
predict,IBclass-method Man page
predict,SVDclass-method Man page
predict,algAverageClass-method Man page
predict,wALSclass-method Man page
print.rrecsys_entries Source code
print.rrecsys_registry Source code
rankScore Man page Source code
recResultsClass Man page
recResultsClass-class Man page
recommend Man page Source code
resetrrecsysenv Source code
roundData Source code
rowRatings Man page
rowRatings,dataSet-method Man page
rrecsys Man page
rrecsys,dataSet-method Man page
rrecsysRegistry Man page
setStoppingCriteria Man page Source code
show,BPRclass-method Man page
show,IBclass-method Man page
show,PPLclass-method Man page
show,SVDclass-method Man page
show,algAverageClass-method Man page
show,dataSet-method Man page
show,evalModel-method Man page
show,recResultsClass-method Man page
show,wALSclass-method Man page
showDeltaError Man page Source code
showStoppingCriteria Man page Source code
sparsity Man page
sparsity,dataSet-method Man page
userAverage Source code
wALS Source code
wALSclass Man page
wALSclass-class Man page
weightScheme Source code

Files

inst
inst/doc
inst/doc/d1_extend.html
inst/doc/b4_funkSVD.html
inst/doc/d1_extend.Rmd
inst/doc/b4_funkSVD.Rmd
inst/doc/a1_dataset.html
inst/doc/c1_evaluation.Rmd
inst/doc/b1_nonpersonalized.html
inst/doc/a0_intro.html
inst/doc/b2_IBCF.R
inst/doc/b3_itera.R
inst/doc/b6_wALS.html
inst/doc/b5_BPR.R
inst/doc/a0_intro.Rmd
inst/doc/b7_predictrecommend.html
inst/doc/b7_predictrecommend.R
inst/doc/a2_dispacherregistry.R
inst/doc/b3_itera.Rmd
inst/doc/a0_intro.R
inst/doc/d1_extend.R
inst/doc/b6_wALS.R
inst/doc/b5_BPR.html
inst/doc/b3_itera.html
inst/doc/b5_BPR.Rmd
inst/doc/b7_predictrecommend.Rmd
inst/doc/c1_evaluation.html
inst/doc/a1_dataset.R
inst/doc/b4_funkSVD.R
inst/doc/b1_nonpersonalized.Rmd
inst/doc/a1_dataset.Rmd
inst/doc/a2_dispacherregistry.html
inst/doc/c1_evaluation.R
inst/doc/b2_IBCF.Rmd
inst/doc/b1_nonpersonalized.R
inst/doc/a2_dispacherregistry.Rmd
inst/doc/b6_wALS.Rmd
inst/doc/b2_IBCF.html
NAMESPACE
data
data/datalist
data/mlLatest100k.rda
R
R/getPrecRecall.R
R/evalPred.R
R/ALG_funkSVD.R
R/ALG_wALS.R
R/some_handy_functions.R
R/ALG_mostpopular.R
R/evalModel.R
R/getAUC.R
R/ALG_IB_kNN.R
R/AAA_registry.R
R/evalRec.R
R/AAA_generics.R
R/ALG_weightScheme_for_ALS.R
R/prediction.R
R/ZZZ.R
R/rrecsys.R
R/convergence.R
R/rankScore.R
R/AAA_classes.R
R/ALG_average.R
R/ALG_BPR.R
R/defineData.R
R/nDCG.R
R/calcBias.R
R/recommend.R
vignettes
vignettes/d1_extend.Rmd
vignettes/b4_funkSVD.Rmd
vignettes/c1_evaluation.Rmd
vignettes/a0_intro.Rmd
vignettes/b3_itera.Rmd
vignettes/b5_BPR.Rmd
vignettes/b7_predictrecommend.Rmd
vignettes/b1_nonpersonalized.Rmd
vignettes/a1_dataset.Rmd
vignettes/b2_IBCF.Rmd
vignettes/a2_dispacherregistry.Rmd
vignettes/b6_wALS.Rmd
MD5
build
build/vignette.rds
DESCRIPTION
man
man/algAverageClass.Rd
man/setStoppingCriteria.Rd
man/getAUC.Rd
man/wALSclass.Rd
man/nDCG.Rd
man/IBclass.Rd
man/evalModel.Rd
man/predict.Rd
man/PPLclass.Rd
man/evalModel-class.Rd
man/recommend.Rd
man/rankScore.Rd
man/evalPred.Rd
man/evalrec.Rd
man/dataSet-class.Rd
man/BPRclass.Rd
man/mlLatest100k.Rd
man/rrecsys.Rd
man/recResultsClass.Rd
man/SVDclass.Rd
man/defineData.Rd
rrecsys documentation built on May 19, 2017, 8:22 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.