rrecsys: Environment for Assessing Recommender Systems

Provides implementations of several popular recommendation systems. They can process standard recommendation datasets (user/item matrix) as input and generate rating predictions and recommendation lists. Standard algorithm implementations included in this package are: Global/Item/User-Average baselines, Item-Based KNN, FunkSVD, BPR and weighted ALS. They can be assessed according to the standard offline evaluation methodology for recommender systems using measures such as MAE, RMSE, Precision, Recall, AUC, NDCG, RankScore and coverage measures. The package is intended for rapid prototyping of recommendation algorithms and education purposes.

AuthorLudovik Çoba [aut, cre, cph], Markus Zanker [ctb]
Date of publication2016-06-27 17:31:21
MaintainerLudovik Çoba <lcoba@unishk.edu.al>
LicenseGPL-3
Version0.9.5.4
https://github.com/ludovikcoba/rrecsys

View on CRAN

Files in this package

rrecsys
rrecsys/inst
rrecsys/inst/doc
rrecsys/inst/doc/d1_extend.html
rrecsys/inst/doc/b4_funkSVD.html
rrecsys/inst/doc/d1_extend.Rmd
rrecsys/inst/doc/b4_funkSVD.Rmd
rrecsys/inst/doc/a1_dataset.html
rrecsys/inst/doc/c1_evaluation.Rmd
rrecsys/inst/doc/b1_nonpersonalized.html
rrecsys/inst/doc/a0_intro.html
rrecsys/inst/doc/b2_IBCF.R
rrecsys/inst/doc/b3_itera.R
rrecsys/inst/doc/b6_wALS.html
rrecsys/inst/doc/b5_BPR.R
rrecsys/inst/doc/a0_intro.Rmd
rrecsys/inst/doc/b7_predictrecommend.html
rrecsys/inst/doc/b7_predictrecommend.R
rrecsys/inst/doc/a2_dispacherregistry.R
rrecsys/inst/doc/b3_itera.Rmd
rrecsys/inst/doc/a0_intro.R
rrecsys/inst/doc/d1_extend.R
rrecsys/inst/doc/b6_wALS.R
rrecsys/inst/doc/b5_BPR.html
rrecsys/inst/doc/b3_itera.html
rrecsys/inst/doc/b5_BPR.Rmd
rrecsys/inst/doc/b7_predictrecommend.Rmd
rrecsys/inst/doc/c1_evaluation.html
rrecsys/inst/doc/a1_dataset.R
rrecsys/inst/doc/b4_funkSVD.R
rrecsys/inst/doc/b1_nonpersonalized.Rmd
rrecsys/inst/doc/a1_dataset.Rmd
rrecsys/inst/doc/a2_dispacherregistry.html
rrecsys/inst/doc/c1_evaluation.R
rrecsys/inst/doc/b2_IBCF.Rmd
rrecsys/inst/doc/b1_nonpersonalized.R
rrecsys/inst/doc/a2_dispacherregistry.Rmd
rrecsys/inst/doc/b6_wALS.Rmd
rrecsys/inst/doc/b2_IBCF.html
rrecsys/NAMESPACE
rrecsys/data
rrecsys/data/datalist
rrecsys/data/mlLatest100k.rda
rrecsys/R
rrecsys/R/getPrecRecall.R rrecsys/R/evalPred.R rrecsys/R/ALG_funkSVD.R rrecsys/R/ALG_wALS.R rrecsys/R/some_handy_functions.R rrecsys/R/ALG_mostpopular.R rrecsys/R/evalModel.R rrecsys/R/getAUC.R rrecsys/R/ALG_IB_kNN.R rrecsys/R/AAA_registry.R rrecsys/R/evalRec.R rrecsys/R/AAA_generics.R rrecsys/R/ALG_weightScheme_for_ALS.R rrecsys/R/prediction.R rrecsys/R/ZZZ.R rrecsys/R/rrecsys.R rrecsys/R/convergence.R rrecsys/R/rankScore.R rrecsys/R/AAA_classes.R rrecsys/R/ALG_average.R rrecsys/R/ALG_BPR.R rrecsys/R/defineData.R rrecsys/R/nDCG.R rrecsys/R/calcBias.R rrecsys/R/recommend.R
rrecsys/vignettes
rrecsys/vignettes/d1_extend.Rmd
rrecsys/vignettes/b4_funkSVD.Rmd
rrecsys/vignettes/c1_evaluation.Rmd
rrecsys/vignettes/a0_intro.Rmd
rrecsys/vignettes/b3_itera.Rmd
rrecsys/vignettes/b5_BPR.Rmd
rrecsys/vignettes/b7_predictrecommend.Rmd
rrecsys/vignettes/b1_nonpersonalized.Rmd
rrecsys/vignettes/a1_dataset.Rmd
rrecsys/vignettes/b2_IBCF.Rmd
rrecsys/vignettes/a2_dispacherregistry.Rmd
rrecsys/vignettes/b6_wALS.Rmd
rrecsys/MD5
rrecsys/build
rrecsys/build/vignette.rds
rrecsys/DESCRIPTION
rrecsys/man
rrecsys/man/algAverageClass.Rd rrecsys/man/setStoppingCriteria.Rd rrecsys/man/getAUC.Rd rrecsys/man/wALSclass.Rd rrecsys/man/nDCG.Rd rrecsys/man/IBclass.Rd rrecsys/man/evalModel.Rd rrecsys/man/predict.Rd rrecsys/man/PPLclass.Rd rrecsys/man/evalModel-class.Rd rrecsys/man/recommend.Rd rrecsys/man/rankScore.Rd rrecsys/man/evalPred.Rd rrecsys/man/evalrec.Rd rrecsys/man/dataSet-class.Rd rrecsys/man/BPRclass.Rd rrecsys/man/mlLatest100k.Rd rrecsys/man/rrecsys.Rd rrecsys/man/recResultsClass.Rd rrecsys/man/SVDclass.Rd rrecsys/man/defineData.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.