Container for a sparse dataset that distinguishes between binary and non-binary feedback datasets. Data are stored as tuples (user, item, rating). Extends _ds.
data:the dataset, class "matrix".
binary:class "logical", determines if the item dataset contains binary (i.e. 1/0) or non-binary ratings.
minimum:class "numeric", defines the minimal value present in the dataset.
maximum:class "numeric", defines the maximal value present in the dataset.
intScale:object of class "logical", if TRUE the range of ratings in the dataset contains as well half star values.
userID:class "numeric", array containing all user IDs.
itemID:class "numeric", array containing all item IDs.
userPointers:class "list", pointer to all users position in the dataset.
itemPointers:class "list", pointer to all items position in the dataset.
signature(object = "sparseDataSet"): number of rows of the dataset.
signature(object = "sparseDataSet"): number of columns of the dataset.
signature(object = "sparseDataSet"): returns the dimensions of the dataset.
signature(object = "sparseDataSet"): returns the number of ratings on each row.
signature(object = "sparseDataSet"): returns the number of ratings on each column.
signature(object = "sparseDataSet"): returns the total number of ratings.
signature(x = "sparseDataSet", i = "ANY", j = "ANY", drop = "ANY")): returns a subset of the dataset.
signature(from = "sparseDataSet", to = "matrix")
signature(object = "sparseDataSet"): returns the average rating on each row.
signature(object = "sparseDataSet"): returns the average rating on each column.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.