Description Usage Arguments Value See Also Examples
Find a robust signature, i.e. a set of features, using averaged and shrucken generalized linear models. Subsamples are taken to fit models, via \ell_1-penalized Cox regression (lasso) or preconditioned lasso (prlasso) algorithm.
1 2 |
surv |
[ |
X |
[ |
model |
[ |
n.rep |
[ |
plapply |
[ |
sd.filter |
[ |
verbose |
[ |
Object of class “rsig”; a list consisting of
model |
model specified by the user |
sd.filter |
sd.filter object |
beta |
coefficient vector |
intercept |
intercept |
predict.rsig, rsig.eval,
rsig.all
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # An example adapted from glmnet package
set.seed(11011)
n = 300
p = 10
nz = 3
X = matrix(rnorm(n*p),n,p,dimnames=list(NULL,seq_len(p)))
beta = rnorm(nz)
f = X[,seq_len(nz)] %*% beta
h = exp(f) / 365.25
t = rexp(n,h)
tcens = rbinom(n=n,prob=.3,size=1) # censoring indicator
S = Surv(t, 1-tcens)
fit = rsig(S, X, "rs.prlasso", n.rep=2)
pred = predict(fit, X)
perf = rsig.eval(pred, S, X)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.