R/t_test.R

Defines functions pairwise_t_test_psd pairwise_t_test t_test

Documented in pairwise_t_test t_test

#' @include utilities.R utilities_two_sample_test.R
NULL
#'T-test
#'
#'
#'@description Provides a pipe-friendly framework to performs one and two sample
#'  t-tests. Read more: \href{https://www.datanovia.com/en/lessons/t-test-in-r/}{T-test in R}.
#'@inheritParams stats::t.test
#'@param data a data.frame containing the variables in the formula.
#'@param formula a formula of the form \code{x ~ group} where \code{x} is a
#'  numeric variable giving the data values and \code{group} is a factor with
#'  one or multiple levels giving the corresponding groups. For example,
#'  \code{formula = TP53 ~ cancer_group}.
#'@param paired a logical indicating whether you want a paired test.
#'@param ref.group a character string specifying the reference group. If
#'  specified, for a given grouping variable, each of the group levels will be
#'  compared to the reference group (i.e. control group).
#'
#'  If \code{ref.group = "all"}, pairwise two sample tests are performed for
#'  comparing each grouping variable levels against all (i.e. basemean).
#'@param mu a number specifying an optional parameter used to form the null hypothesis.
#'@param comparisons A list of length-2 vectors specifying the groups of
#'  interest to be compared. For example to compare groups "A" vs "B" and "B" vs
#'  "C", the argument is as follow: \code{comparisons = list(c("A", "B"), c("B",
#'  "C"))}
#'@param p.adjust.method method to adjust p values for multiple comparisons.
#'  Used when pairwise comparisons are performed. Allowed values include "holm",
#'  "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". If you don't
#'  want to adjust the p value (not recommended), use p.adjust.method = "none".
#'@param pool.sd logical value used in the function \code{pairwise_t_test()}.
#'  Switch to allow/disallow the use of a pooled SD.
#'
#'  The \code{pool.sd = TRUE} (default) calculates a common SD for all groups
#'  and uses that for all comparisons (this can be useful if some groups are
#'  small). This method does not actually call t.test, so extra arguments are
#'  ignored. Pooling does not generalize to paired tests so pool.sd and paired
#'  cannot both be TRUE.
#'
#'  If \code{pool.sd = FALSE} the standard two sample t-test is applied to all
#'  possible pairs of groups. This method calls the \code{t.test()}, so extra
#'  arguments, such as \code{var.equal} are accepted.
#'
#'@param detailed logical value. Default is FALSE. If TRUE, a detailed result is
#'  shown.
#'@param ... other arguments to be passed to the function
#'  \code{\link[stats]{t.test}}.
#'
#'@details
#'
#'- If a list of comparisons is specified, the result of the pairwise tests is
#'filtered to keep only the comparisons of interest. The p-value is adjusted
#'after filtering.
#'
#'- For a grouped data, if pairwise test is performed, then the p-values are
#'adjusted for each group level independently.
#'
#'@return return a data frame with some the following columns: \itemize{ \item
#'  \code{.y.}: the y variable used in the test. \item \code{group1,group2}: the
#'  compared groups in the pairwise tests. \item \code{n,n1,n2}: Sample counts.
#'  \item \code{statistic}: Test statistic used to compute the p-value. \item
#'  \code{df}: degrees of freedom. \item \code{p}: p-value. \item \code{p.adj}:
#'  the adjusted p-value. \item \code{method}: the statistical test used to
#'  compare groups. \item \code{p.signif, p.adj.signif}: the significance level
#'  of p-values and adjusted p-values, respectively. \item \code{estimate}:
#'  estimate of the effect size. It corresponds to the estimated mean or
#'  difference in means depending on whether it was a one-sample test or a
#'  two-sample test. \item \code{estimate1, estimate2}: show the mean values of
#'  the two groups, respectively, for independent samples t-tests. \item
#'  \code{alternative}: a character string describing the alternative
#'  hypothesis. \item \code{conf.low,conf.high}: Lower and upper bound on a
#'  confidence interval. }
#'
#'  The \strong{returned object has an attribute called args}, which is a list
#'  holding the test arguments.
#' @examples
#' # Load data
#' #:::::::::::::::::::::::::::::::::::::::
#' data("ToothGrowth")
#' df <- ToothGrowth
#'
#' # One-sample test
#' #:::::::::::::::::::::::::::::::::::::::::
#' df %>% t_test(len ~ 1, mu = 0)
#'
#'
#' # Two-samples unpaired test
#' #:::::::::::::::::::::::::::::::::::::::::
#' df %>% t_test(len ~ supp)
#'
#' # Two-samples paired test
#' #:::::::::::::::::::::::::::::::::::::::::
#' df %>% t_test (len ~ supp, paired = TRUE)
#'
#' # Compare supp levels after grouping the data by "dose"
#' #::::::::::::::::::::::::::::::::::::::::
#' df %>%
#'   group_by(dose) %>%
#'   t_test(data =., len ~ supp) %>%
#'   adjust_pvalue(method = "bonferroni") %>%
#'   add_significance("p.adj")
#'
#' # pairwise comparisons
#' #::::::::::::::::::::::::::::::::::::::::
#' # As dose contains more than two levels ==>
#' # pairwise test is automatically performed.
#' df %>% t_test(len ~ dose)
#'
#' # Comparison against reference group
#' #::::::::::::::::::::::::::::::::::::::::
#' # each level is compared to the ref group
#' df %>% t_test(len ~ dose, ref.group = "0.5")
#'
#' # Comparison against all
#' #::::::::::::::::::::::::::::::::::::::::
#' df %>% t_test(len ~ dose, ref.group = "all")
#'
#'@describeIn t_test t test
#'@export
t_test <- function(
  data, formula, comparisons = NULL, ref.group = NULL,
  p.adjust.method = "holm",
  paired = FALSE, var.equal = FALSE, alternative = "two.sided",
  mu = 0, conf.level = 0.95, detailed = FALSE
)
{
  env <- as.list(environment())
  args <- env %>%
    .add_item(method = "t_test")
  params <- env %>%
    remove_null_items() %>%
    add_item(method = "t.test")

  outcome <- get_formula_left_hand_side(formula)
  group <- get_formula_right_hand_side(formula)
  number.of.groups <- guess_number_of_groups(data, group)
  if(number.of.groups > 2 & !is.null(ref.group)){
    if(ref.group %in% c("all", ".all.")){
      params$data <- create_data_with_all_ref_group(data, outcome, group)
      params$ref.group <- "all"
    }
  }
  test.func <- two_sample_test
  if(number.of.groups > 2)
    test.func <- pairwise_two_sample_test
  do.call(test.func, params) %>%
    set_attrs(args = args) %>%
    add_class(c("rstatix_test", "t_test"))
}



#'@describeIn t_test performs pairwise two sample t-test. Wrapper around the R
#'  base function \code{\link[stats]{pairwise.t.test}}.
#'@export
pairwise_t_test <- function(
  data, formula, comparisons = NULL, ref.group = NULL,
  p.adjust.method = "holm", paired = FALSE, pool.sd = !paired,
  detailed = FALSE, ...) {

  args <- c(as.list(environment()), list(...)) %>%
    .add_item(method = "t_test")
  if(paired) pool.sd <- FALSE
  if(pool.sd){
    res <- pairwise_t_test_psd(
      data, formula, comparisons = comparisons, ref.group = ref.group,
      p.adjust.method = p.adjust.method, detailed = detailed, ...
    )
  }
  else{
    res <- pairwise_two_sample_test(
      data, formula, method = "t.test",
      comparisons = comparisons, ref.group = ref.group,
      p.adjust.method = p.adjust.method, paired = paired,
      detailed = detailed, ...
    )
  }
  res %>%
    set_attrs(args = args) %>%
    add_class(c("rstatix_test", "t_test"))
  }


pairwise_t_test_psd <- function(
  data, formula, comparisons = NULL, ref.group = NULL,
  p.adjust.method = "holm", alternative = "two.sided",
  detailed = FALSE
  )
  {
  . <- NULL
  if(is_grouped_df(data)){
    results <- data %>%
      doo(pairwise_t_test_psd, formula, comparisons,
          ref.group, p.adjust.method, alternative = alternative,
          detailed = detailed)
    return(results)
  }

  outcome <- get_formula_left_hand_side(formula)
  group <- get_formula_right_hand_side(formula)
  # Convert group into factor if this is not already the case
  data <- data %>% .as_factor(group, ref.group = ref.group)
  outcome.values <- data %>% pull(!!outcome)
  group.values <- data %>% pull(!!group)
  group.size <- data %>% get_group_size(group)

  # Compute pairwise t-test
  group1 <- group2 <- p.value <- NULL
  results <- stats::pairwise.t.test(
    outcome.values, group.values,
    p.adjust.method = "none", pool.sd = TRUE,
    alternative = alternative
    ) %>%
    tidy() %>%
    select(group2, group1, p.value)
  colnames(results) <- c("group1", "group2", "p")
  n1 <- group.size[results$group1]
  n2 <- group.size[results$group2]

  results <- results %>%
    mutate(method = "T-test") %>%
    add_column(.y. = outcome, .before = 1) %>%
    add_column(n1 = n1, n2 = n2, .after = "group2")

  # If ref.group specified, keep only comparisons against reference
  if(!is.null(ref.group)){
    results <- results %>%
      filter(group1 == ref.group)
  }

  # If a comparison list is provided, extract the comparisons of interest
  if(!is.null(comparisons)){
    results <- comparisons %>%
      purrr::map_dfr(~ results %>% filter(group1 %in% .x & group2 %in% .x) )
  }

  p <- p.adj <- NULL
  results <- results %>%
    adjust_pvalue(method = p.adjust.method) %>%
    add_significance("p") %>%
    add_significance("p.adj") %>%
    mutate(
      p = signif(p, digits = 3),
      p.adj = signif(p.adj, digits = 3)
    )
  if(!detailed) results <- remove_details(results, method = "t.test")
  results
}

Try the rstatix package in your browser

Any scripts or data that you put into this service are public.

rstatix documentation built on Feb. 16, 2023, 6:10 p.m.