View source: R/midas_functions.R
| GM_X_loglik_no_skew | R Documentation | 
Obtains the log-likelihood of the GARCH-MIDAS-X, according to two errors' conditional distributions: Normal and Student-t. For details, see \insertCiteengle_ghysels_sohn_2013;textualrumidas and \insertCiteconrad_lock_2015;textualrumidas.
GM_X_loglik_no_skew(
  param,
  daily_ret,
  X,
  mv_m,
  K,
  distribution,
  lag_fun = "Beta"
)
param | 
 Vector of starting values.  | 
daily_ret | 
 Daily returns, which must be an "xts" object.  | 
X | 
 Additional "X" variable, which must be an "xts" object. Morever, "X" must be observed for the same days of daily_ret.  | 
mv_m | 
 MIDAS variable already transformed into a matrix, through   | 
K | 
 Number of (lagged) realizations of the MIDAS variable to consider.  | 
distribution | 
 The conditional density to use for the innovations. At the moment, valid choices are "norm" and "std", for the Normal and Student-t distributions.  | 
lag_fun | 
 optional. Lag function to use. Valid choices are "Beta" (by default) and "Almon", for the Beta and Exponential Almon lag functions, respectively.  | 
The resulting vector is the log-likelihood value for each i,t.
mv_into_mat.
# conditional density of the innovations: normal
start_val<-c(alpha=0.01,beta=0.8,z=0.1,m=0,theta=0.1,w2=2)
r_t<-sp500['2005/2010']
X<-rv5['2005/2010']^0.5
mv_m<-mv_into_mat(r_t,diff(indpro),K=12,"monthly")
sum(GM_X_loglik_no_skew(start_val,r_t,X,mv_m,K=12,distribution="norm"))
# conditional density of the innovations: Student-t
start_val<-c(alpha=0.01,beta=0.8,z=0.1,m=0,theta=0.1,w2=2,shape=5)
r_t<-sp500['2005/2010']
X<-rv5['2005/2010']^0.5
mv_m<-mv_into_mat(r_t,indpro,K=12,"monthly")
sum(GM_X_loglik_no_skew(start_val,r_t,X,mv_m,K=12,distribution="std"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.