View source: R/midas_functions.R
| GM_loglik | R Documentation | 
Obtains the log-likelihood of the GARCH-MIDAS, with an asymmetric term linked to past negative returns, according to two errors' conditional distributions: Normal and Student-t. For details, see \insertCiteengle_ghysels_sohn_2013;textualrumidas and \insertCiteconrad_lock_2015;textualrumidas.
GM_loglik(param, daily_ret, mv_m, K, distribution, lag_fun = "Beta")
| param | Vector of starting values. | 
| daily_ret | Daily returns, which must be an "xts" object. | 
| mv_m | MIDAS variable already transformed into a matrix, through  | 
| K | Number of (lagged) realizations of the MIDAS variable to consider. | 
| distribution | The conditional density to use for the innovations. At the moment, valid choices are "norm" and "std", for the Normal and Student-t distributions. | 
| lag_fun | optional. Lag function to use. Valid choices are "Beta" (by default) and "Almon", for the Beta and Exponential Almon lag functions, respectively. | 
The resulting vector is the log-likelihood value for each i,t.
mv_into_mat.
# conditional density of the innovations: normal
start_val<-c(alpha=0.01,beta=0.8,gamma=0.05,m=0,theta=0.1,w2=2)
r_t<-sp500['2005/2010']
mv_m<-mv_into_mat(r_t,diff(indpro),K=12,"monthly")
sum(GM_loglik(start_val,r_t,mv_m,K=12,distribution="norm"))
# conditional density of the innovations: Student-t
start_val<-c(alpha=0.01,beta=0.8,gamma=0.05,m=0,theta=0.1,w2=2,shape=5)
r_t<-sp500['2005/2010']
mv_m<-mv_into_mat(r_t,diff(indpro),K=12,"monthly")
sum(GM_loglik(start_val,r_t,mv_m,K=12,distribution="std"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.