View source: R/midas_functions.R
GM_loglik_no_skew | R Documentation |
Obtains the log-likelihood of the GARCH-MIDAS, according to two errors' conditional distributions: Normal and Student-t. For details, see \insertCiteengle_ghysels_sohn_2013;textualrumidas and \insertCiteconrad_lock_2015;textualrumidas.
GM_loglik_no_skew(param, daily_ret, mv_m, K, distribution, lag_fun = "Beta")
param |
Vector of starting values. |
daily_ret |
Daily returns, which must be an "xts" object. |
mv_m |
MIDAS variable already transformed into a matrix, through |
K |
Number of (lagged) realizations of the MIDAS variable to consider. |
distribution |
The conditional density to use for the innovations. At the moment, valid choices are "norm" and "std", for the Normal and Student-t distributions. |
lag_fun |
optional. Lag function to use. Valid choices are "Beta" (by default) and "Almon", for the Beta and Exponential Almon lag functions, respectively. |
The resulting vector is the log-likelihood value for each i,t
.
mv_into_mat
.
# conditional density of the innovations: normal
start_val<-c(alpha=0.01,beta=0.8,m=0,theta=0.1,w2=2)
r_t<-sp500['2005/2010']
mv_m<-mv_into_mat(r_t,diff(indpro),K=12,"monthly")
sum(GM_loglik_no_skew(start_val,r_t,mv_m,K=12,distribution="norm"))
# conditional density of the innovations: Student-t
start_val<-c(alpha=0.01,beta=0.8,m=0,theta=0.1,w2=2,shape=5)
r_t<-sp500['2005/2010']
mv_m<-mv_into_mat(r_t,indpro,K=12,"monthly")
sum(GM_loglik_no_skew(start_val,r_t,mv_m,K=12,distribution="std"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.