Regional Classification Table

Share:

Description

A number of regional classifications exist, e.g. SRES, Stern, etc. This table can be used to find which grouping a country belongs to, given its country code. A variety of different codes or groupings can be used.

Format

A data frame with the following variables.

ISO3

ISO 3 letter country code

ADMIN

country name

REGION

7 region continent classification

continent

6 continents classification

GEO3major

Global Environment Outlook GEO3 major region names

GEO3

Global Environment Outlook GEO3 major region names

IMAGE24

Image24 region names

GLOCAF

GLOCAF region names

Stern

Stern report region names

SRESmajor

SRES major region names

SRES

SRES region names

GBD

Global Burden of Disease GBD region names

AVOIDnumeric

numeric codes for AVOID regions

AVOIDname

AVOID regions

LDC

UN Least Developed Countries

SID

UN Small Island Developing states

LLDC

UN Landlocked Developing Countries

Details

Joined onto vector country maps. Used by country2Region and mapByRegion.

Examples

1
2
3
4
5
6
7
8
9
data(countryRegions,envir=environment(),package="rworldmap")
str(countryRegions)

#joining example data onto the regional classifications
data(countryExData,envir=environment(),package="rworldmap")
dF <- merge(countryExData,countryRegions,by.x='ISO3V10',by.y='ISO3')
#plotting ENVHEALTH for Least Developed Countries (LDC) against others
#plot( dF$ENVHEALTH ~ dF$LDC)
#points( y=dF$ENVHEALTH, x=dF$LDC)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.