Description Usage Arguments Value Author(s) References Examples
View source: R/PeronaFreemanSC.R
Bi-parted spectral clustering based on Peronna and Freeman algorithm, which separates the data into two distinct clusters
1 | PeronaFreemanSC(W, flagDiagZero = FALSE, verbose = FALSE)
|
W |
Gram Similarity Matrix. |
flagDiagZero |
if True, Put zero on the similarity matrix W. |
verbose |
To output the verbose in the terminal. |
returns a list containing the following elements:
cluster: a vector containing the cluster
eigenVect: a vector containing the eigenvectors
eigenVal: a vector containing the eigenvalues
Emilie Poisson Caillault and Erwan Vincent
Perona, P. and Freeman, W. (1998). A factorization approach to grouping. In European Conference on Computer Vision, pages 655-670
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ### Example 1: 2 disks of the same size
n<-100 ; r1<-1
x<-(runif(n)-0.5)*2;
y<-(runif(n)-0.5)*2
keep1<-which((x*2+y*2)<(r1*2))
disk1<-data.frame(x+3*r1,y)[keep1,]
disk2 <-data.frame(x-3*r1,y)[keep1,]
sameTwoDisks <- rbind(disk1,disk2)
W <- compute.similarity.ZP(scale(sameTwoDisks))
res <- PeronaFreemanSC(W,flagDiagZero=TRUE,verbose=TRUE)
plot(sameTwoDisks, col = res$cluster)
plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
### Example 2: Speed and Stopping Distances of Cars
W <- compute.similarity.ZP(scale(iris[,-5]))
res <- PeronaFreemanSC(W,flagDiagZero=TRUE,verbose=TRUE)
plot(iris, col = res$cluster)
plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.