Description Usage Arguments Value Author(s) References Examples
The function, for a given similarity matrix, will separate the data using a spectral space. It uses the Von Luxburg algorithm to do this
1 | VonLuxburgSC(W, K = 5, flagDiagZero = FALSE, verbose = FALSE)
|
W |
Gram Similarity Matrix. |
K |
number of cluster to obtain. |
flagDiagZero |
if True, Put zero on the similarity matrix W. |
verbose |
To output the verbose in the terminal. |
returns a list containing the following elements:
cluster: a vector containing the cluster
eigenVect: a vector containing the eigenvectors
eigenVal: a vector containing the eigenvalues
Emilie Poisson Caillault and Erwan Vincent
Von Luxburg, U. (2007). A Tutorial on Spectral Clustering. Statistics and Computing, Volume 17(4), pages 395-416
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ### Example 1: 2 disks of the same size
n<-100 ; r1<-1
x<-(runif(n)-0.5)*2;
y<-(runif(n)-0.5)*2
keep1<-which((x*2+y*2)<(r1*2))
disk1<-data.frame(x+3*r1,y)[keep1,]
disk2 <-data.frame(x-3*r1,y)[keep1,]
sameTwoDisks <- rbind(disk1,disk2)
W <- compute.similarity.ZP(scale(sameTwoDisks))
res <- VonLuxburgSC(W,K=2,flagDiagZero=TRUE,verbose=TRUE)
plot(sameTwoDisks, col = res$cluster)
plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
### Example 2: Speed and Stopping Distances of Cars
W <- compute.similarity.ZP(scale(iris[,-5]))
res <- VonLuxburgSC(W,K=2,flagDiagZero=TRUE,verbose=TRUE)
plot(iris, col = res$cluster)
plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.