Description Usage Arguments Details Value References See Also Examples
Fits by REML method the unit level model of Battese, Harter and Fuller (1988) to a transformation of the specified dependent variable by a Box-Cox family or power family and obtains Monte Carlo approximations of EB estimators of the specified small area indicators, when the values of auxiliary variables for out-of-sample units are available.
1 2 |
formula |
an object of class |
dom |
|
selectdom |
|
Xnonsample |
matrix or data frame containing in the first column the domain codes and in the rest of columns the values of each of |
MC |
number of Monte Carlo replicates for the empirical approximation of the EB estimator. Default value is |
data |
optional data frame containing the variables named in |
transform |
type of transformation for the dependent variable to be chosen between the |
lambda |
value for the parameter of the family of transformations specified in |
constant |
constant added to the dependent variable before doing the transformation, to achieve a distribution close to Normal. Default value is |
indicator |
function of the (untransformed) variable on the left hand side of |
This function uses random number generation. To fix the seed, use set.seed
.
A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed.
A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See formula
for more details of allowed formulae.
The function returns a list with the following objects:
eb |
data frame with number of rows equal to number of selected domains,
containing in its columns the domain codes ( |
fit |
a list containing the following objects:
|
Cases with NA values in formula
or dom
are ignored.
- Molina, I. and Rao, J.N.K. (2010). Small Area Estimation of Poverty Indicators. The Canadian Journal of Statistics 38, 369-385.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | data(incomedata) # Load data set
attach(incomedata)
# Construct design matrix for sample elements
Xs <- cbind(age2, age3, age4, age5, nat1, educ1, educ3, labor1, labor2)
# Select the domains to compute EB estimators.
data(Xoutsamp)
domains <- unique(Xoutsamp[,"domain"])
# Poverty gap indicator
povertyline <- 0.6*median(income)
povertyline # 6477.484
povgap <- function(y)
{
z <- 6477.484
result <- mean((y<z) * (z-y) / z)
return (result)
}
# Compute EB predictors of poverty gap. The value constant=3600 is selected
# to achieve approximately symmetric residuals.
set.seed(123)
result <- ebBHF(income ~ Xs, dom=prov, selectdom=domains,
Xnonsample=Xoutsamp, MC=10, constant=3600, indicator=povgap)
result$eb
result$fit$summary
result$fit$fixed
result$fit$random[,1]
result$fit$errorvar
result$fit$refvar
result$fit$loglike
result$fit$residuals[1:10]
detach(incomedata)
|
Loading required package: nlme
Loading required package: MASS
[1] 6477.484
domain eb sampsize
1 42 0.07319876 20
2 5 0.04268935 58
3 34 0.06708650 72
4 44 0.09094977 72
5 40 0.08937263 58
Linear mixed-effects model fit by REML
Data: NULL
AIC BIC logLik
18625.21 18718.23 -9300.604
Random effects:
Formula: ~1 | as.factor(dom)
(Intercept) Residual
StdDev: 0.09547609 0.4131308
Fixed effects: ys ~ -1 + Xs
Value Std.Error DF t-value p-value
Xs(Intercept) 9.537283 0.022006686 17138 433.3812 0.0000
XsXsage2 -0.027813 0.013023247 17138 -2.1357 0.0327
XsXsage3 -0.027413 0.011916475 17138 -2.3004 0.0214
XsXsage4 0.074673 0.012984083 17138 5.7511 0.0000
XsXsage5 0.043535 0.013334832 17138 3.2647 0.0011
XsXsnat1 -0.028042 0.016019267 17138 -1.7505 0.0800
XsXseduc1 -0.159866 0.009077064 17138 -17.6121 0.0000
XsXseduc3 0.283830 0.010504488 17138 27.0199 0.0000
XsXslabor1 0.163679 0.008814327 17138 18.5697 0.0000
XsXslabor2 -0.056200 0.017678722 17138 -3.1790 0.0015
Correlation:
Xs(In) XsXsg2 XsXsg3 XsXsg4 XsXsg5 XsXsn1 XsXsd1 XsXsd3 XsXsl1
XsXsage2 -0.216
XsXsage3 -0.237 0.585
XsXsage4 -0.214 0.505 0.689
XsXsage5 -0.220 0.420 0.531 0.601
XsXsnat1 -0.701 0.000 0.001 -0.006 0.007
XsXseduc1 0.004 -0.109 -0.237 -0.419 -0.563 -0.009
XsXseduc3 0.000 -0.060 -0.172 -0.163 -0.189 0.005 0.273
XsXslabor1 -0.005 -0.270 -0.553 -0.345 -0.044 0.007 0.073 -0.108
XsXslabor2 0.002 -0.192 -0.243 -0.141 -0.007 -0.002 0.004 -0.016 0.301
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.19680268 -0.66047072 0.02061041 0.68969672 3.66527538
Number of Observations: 17199
Number of Groups: 52
Xs(Intercept) XsXsage2 XsXsage3 XsXsage4 XsXsage5
9.53728299 -0.02781316 -0.02741263 0.07467327 0.04353472
XsXsnat1 XsXseduc1 XsXseduc3 XsXslabor1 XsXslabor2
-0.02804178 -0.15986602 0.28383002 0.16367944 -0.05620021
[1] -0.162994066 0.083665452 0.006156282 0.010610612 0.112049178
[6] 0.056958532 0.139209334 -0.116227817 0.066798606 -0.135110483
[11] 0.175414493 -0.055216733 0.057731658 -0.068177953 -0.041611949
[16] 0.016430469 -0.040071002 -0.111260569 -0.023848814 -0.042183811
[21] 0.147726646 -0.057688364 -0.048976752 -0.038383546 0.081658097
[26] -0.060433327 -0.119010498 0.007236526 -0.005073185 0.082382359
[31] 0.054022677 -0.068640077 -0.066290363 -0.021216914 0.126457049
[36] 0.137526791 0.068024820 -0.024693868 -0.176217294 -0.066863506
[41] -0.009339917 0.054431979 -0.213186263 -0.078954489 0.106059545
[46] -0.025871701 0.091385311 -0.040677584 -0.021735275 0.150201608
[51] 0.083439902 0.024378193
[1] 0.1706771
[1] 0.009115684
[1] -9300.604
[1] 0.07560699 -0.23550942 -0.86505003 -0.86274684 -0.04229917 -1.10005074
[7] 0.13955333 -0.54144964 -0.20247407 -0.53275775
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.