eblupSFH: EBLUPs based on a spatial Fay-Herriot model.

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/eblupSFH.R

Description

This function gives small area estimators based on a spatial Fay-Herriot model, where area effects follow a SAR(1) process. Fitting method can be chosen between REML and ML.

Usage

1
2
eblupSFH(formula, vardir, proxmat, method = "REML", MAXITER = 100, 
         PRECISION = 0.0001, data)

Arguments

formula

an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The variables included in formula must have a length equal to the number of domains D. Details of model specification are given under Details.

vardir

vector containing the D sampling variances of direct estimators for each domain. The values must be sorted as the variables in formula.

proxmat

D*D proximity matrix or data frame with values in the interval [0,1] containing the proximities between the row and column domains. The rows add up to 1. The rows and columns of this matrix must be sorted as the elements in formula.

method

type of fitting method, to be chosen between "REML" or "ML". Default value is REML.

MAXITER

maximum number of iterations allowed for the Fisher-scoring algorithm. Default value is 100.

PRECISION

convergence tolerance limit for the Fisher-scoring algorithm. Default value is 0.0001.

data

optional data frame containing the variables named in formula and vardir. By default the variables are taken from the environment from which eblupSHF is called.

Details

A typical model has the form response ~ terms where response is the (numeric) response vector and terms is a series of terms which specifies a linear predictor for response. A terms specification of the form first + second indicates all the terms in first together with all the terms in second with duplicates removed.

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See formula for more details of allowed formulae.

Value

The function returns a list with the following objects:

eblup

vector with the values of the estimators for the domains.

fit

a list containing the following objects:

  • method: type of fitting method applied ("REML" or "ML").

  • convergence: a logical value equal to TRUE if Fisher-scoring algorithm converges in less than MAXITER iterations.

  • iterations: number of iterations performed by the Fisher-scoring algorithm.

  • estcoef: a data frame with the estimated model coefficients in the first column (beta), their asymptotic standard errors in the second column (std.error), the t statistics in the third column (tvalue) and the p-values of the significance of each coefficient in last column (pvalue).

  • refvar: estimated random effects variance.

  • spatialcorr: estimated spatial correlation parameter.

  • goodness: vector containing three goodness-of-fit measures: loglikehood, AIC and BIC.

In case that formula, vardir or proxmat contain NA values a message is printed and no action is done.

Author(s)

Isabel Molina, Monica Pratesi and Nicola Salvati.

References

- Small Area Methods for Poverty and Living Conditions Estimates (SAMPLE), funded by European Commission, Collaborative Project 217565, Call identifier FP7-SSH-2007-1.

- Molina, I., Salvati, N. and Pratesi, M. (2009). Bootstrap for estimating the MSE of the Spatial EBLUP. Computational Statistics 24, 441-458.

- Petrucci, A. and Salvati, N. (2006). Small area estimation for spatial correlation in watershed erosion assessment. Journal of Agricultural, Biological and Environmental Statistics 11, 169-182.

- Pratesi, M. and Salvati, N. (2008). Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Statistical Methods & Applications 17, 113-141.

See Also

mseSFH, npbmseSFH, pbmseSFH

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(grapes)       # Load data set
data(grapesprox)   # Load proximity matrix 

# Fit Spatial Fay-Herriot model using ML method
resultML <- eblupSFH(grapehect ~ area + workdays - 1, var, grapesprox,
                     method="ML", data=grapes)
resultML

# Fit Spatial Fay-Herriot model using REML method
resultREML <- eblupSFH(grapehect ~ area + workdays - 1, var, grapesprox,
                       data=grapes)
resultREML

Example output

Loading required package: nlme
Loading required package: MASS
$eblup
           [,1]
1    31.2571366
2    71.6565845
3    73.8829196
4    62.2841484
5    39.5308835
6    78.5373862
7    50.1055964
8    41.2263981
9   109.4093594
10   10.2332430
11   80.0567852
12   78.4564565
13   60.5216891
14   52.7110630
15   59.4059338
16   69.0733769
17  103.0358109
18   43.0376736
19   34.9705054
20   73.0570173
21   71.6305528
22   84.2942451
23   59.9985107
24   66.6550468
25   70.8457003
26   58.7060896
27   75.1584138
28   15.8076017
29    2.0184207
30  130.1651225
31   36.2506135
32   22.4582624
33   15.5453618
34   63.7437409
35   60.9416655
36   90.2747710
37   54.2737572
38   41.7060418
39   83.1891749
40   58.7945444
41    0.6296585
42   98.3365518
43   76.5639619
44   38.9012443
45   17.1897564
46  138.7458221
47   48.4408672
48   52.3650391
49   28.7725830
50   77.6912187
51   64.2381503
52   38.0107638
53   58.9726064
54   39.9604880
55   19.6400166
56   95.0019455
57   74.4529403
58   58.8731120
59   57.5307451
60   41.5563091
61   96.3267492
62   66.6626507
63   81.7564908
64   52.9329892
65   38.4135642
66   63.8083122
67   46.3935315
68   43.6491451
69   44.5430817
70   50.2326839
71   78.5652106
72   62.5336326
73   35.7404025
74   73.8278276
75   52.7127620
76   86.1671992
77  103.1685856
78   52.5739141
79   46.7438946
80   34.6463614
81  144.5388615
82   78.2806430
83   90.1509841
84   73.9552097
85   52.8541209
86   50.1336880
87   24.3813547
88   57.6624491
89   36.2442600
90   26.7916040
91   30.8260040
92   40.4945601
93  161.7345625
94   32.2696092
95   49.2624511
96   97.0983242
97   46.8936262
98   47.6331473
99   68.5548702
100  72.5679566
101  72.9207955
102  50.4262908
103 106.6644627
104  61.3234348
105  37.0177214
106  54.7530544
107  30.3319063
108  47.6724771
109  49.5637769
110  85.3348212
111  29.6114648
112  99.5816154
113  94.8991783
114  76.2080012
115  81.9817368
116  66.1058067
117  66.9672190
118  61.9454969
119  51.6259968
120  66.8841082
121  39.4323778
122  36.0874984
123  72.5341149
124  61.9806544
125  53.0519669
126  44.4142545
127  27.8057962
128  64.0726720
129 116.1241404
130  56.8226201
131 118.7969663
132  58.2583539
133  62.6770553
134 128.3176632
135  39.0196390
136  47.7733704
137  56.5838926
138  52.6086162
139  63.4773596
140  54.5707260
141 153.8960106
142  67.2853271
143  71.6824719
144  47.9948304
145  70.4068895
146  19.6685819
147  73.9936258
148  36.6553805
149  82.1917874
150  25.3320132
151  57.0787989
152  73.8823648
153  71.9995960
154  79.1102127
155  39.8691805
156  72.9722124
157  34.8268215
158 112.1174723
159  45.2070954
160  79.6465607
161  59.8649513
162  68.0170117
163  89.4288024
164 143.5199710
165 140.9778530
166  59.6112614
167  31.3498354
168  57.8377606
169  74.8642556
170 108.6159477
171  78.0477770
172  71.8696746
173 216.1489762
174 121.4248739
175  19.8307445
176  51.5444224
177  64.3876663
178  35.0488766
179  34.2581905
180  52.1698091
181  55.1143751
182  51.3932915
183  88.8923297
184  60.5062181
185  72.0946965
186  67.9996235
187 167.5943931
188  79.3921557
189  88.6387694
190 106.9205213
191  84.8028113
192  23.7670753
193  28.6373826
194  48.9580029
195  68.4149461
196  68.6009218
197  17.9453849
198  55.5774211
199  84.2433532
200 102.8574841
201  37.6714008
202  27.7713359
203  53.1466704
204  88.9922422
205  55.6620157
206  26.3971742
207  51.0118947
208  46.2535603
209  96.9251567
210  58.9645809
211  75.1200604
212  52.2421521
213  70.3246376
214 120.1460918
215  53.9083444
216  30.2498960
217  38.1943007
218  54.3492624
219  95.3340076
220 100.4679579
221  49.6672258
222  53.7532926
223  39.9058070
224  96.2785835
225  75.2770396
226 118.1056690
227  57.7993445
228 220.6941375
229  82.2203411
230  90.8117563
231  91.4824044
232  61.0794578
233  49.0188931
234  69.0659050
235  44.9272478
236 109.9512289
237  55.7020686
238  52.3964181
239  85.6598396
240  75.7578853
241  50.2374927
242  57.0745136
243  35.5549663
244  29.0189521
245  33.0785540
246  54.1355475
247  32.1155910
248  63.8175726
249  16.1157392
250  44.0914980
251  40.8441234
252  87.6735913
253  46.4325558
254  62.8084239
255 114.3535108
256 167.9654691
257  59.1685443
258 106.9977092
259  91.4451279
260  43.8867981
261  93.1682370
262  65.8409008
263  81.3622034
264  43.9925968
265  53.5930920
266 158.4691688
267 121.0510081
268 123.6444498
269 111.4957129
270  46.4983395
271  54.2962505
272  88.4482394
273  89.0357233
274  24.2158794

$fit
$fit$method
[1] "ML"

$fit$convergence
[1] TRUE

$fit$iterations
[1] 6

$fit$estcoef
                beta   std.error    tvalue       pvalue
area     -0.01232217 0.002055485 -5.994777 2.037649e-09
workdays  0.49943463 0.012297241 40.613553 0.000000e+00

$fit$refvar
[1] 69.22195

$fit$spatialcorr
[1] 0.6045822

$fit$goodness
  loglike       AIC       BIC 
-1210.188  2428.377  2442.830 


$eblup
           [,1]
1    31.2473574
2    71.7091179
3    73.8818783
4    62.3119391
5    39.5331862
6    78.5372343
7    50.1179508
8    41.2215285
9   109.4147029
10   10.2332370
11   80.0601239
12   78.4564549
13   60.5230608
14   52.7016378
15   59.4096364
16   69.0928112
17  103.0588057
18   43.0519058
19   34.9766345
20   73.0541907
21   71.6304269
22   84.3444241
23   59.9903091
24   66.7118986
25   70.9238814
26   58.7022975
27   75.1170882
28   15.8075814
29    2.0184115
30  130.1856472
31   36.2229314
32   22.4439174
33   15.5070131
34   63.6980686
35   60.9591184
36   90.2772340
37   54.2759008
38   41.7050918
39   83.2384378
40   58.7763103
41    0.6296496
42   98.3732451
43   76.5099460
44   38.8980894
45   17.1595737
46  138.7936677
47   48.4546593
48   52.3064698
49   28.7510665
50   77.6802874
51   64.1364943
52   38.0073916
53   58.9717040
54   39.8908532
55   19.6398611
56   94.9963280
57   74.4423215
58   58.8579486
59   57.5260939
60   41.5551500
61   96.3268999
62   66.6611015
63   81.7867520
64   52.9305981
65   38.4023021
66   63.8288160
67   46.3570692
68   43.6399537
69   44.5249631
70   50.1819752
71   78.5692175
72   62.5305710
73   35.7362787
74   73.8062057
75   52.5933467
76   86.1573787
77  103.2219022
78   52.5712512
79   46.6804467
80   34.5747116
81  144.5602785
82   78.3065162
83   90.2131325
84   73.8694984
85   52.7152760
86   50.0417446
87   24.2862729
88   57.6560481
89   36.2432837
90   26.7900529
91   30.7297622
92   40.4096826
93  161.7055453
94   32.1926932
95   49.1407259
96   97.1633974
97   46.7796556
98   47.6425546
99   68.4741555
100  72.5824824
101  72.8469544
102  50.4263793
103 106.6669401
104  61.2470009
105  36.8935562
106  54.7449782
107  30.3188084
108  47.6734216
109  49.4521361
110  85.4316873
111  29.6023981
112  99.6132590
113  94.8995528
114  76.2335943
115  81.9153663
116  66.2122503
117  67.1170202
118  61.8854625
119  51.6299238
120  66.8980289
121  39.4326384
122  36.0839576
123  72.5438949
124  61.9240457
125  53.0018941
126  44.4072469
127  27.7115606
128  64.0778863
129 116.1888414
130  56.8317880
131 118.8112966
132  58.3909477
133  62.7837687
134 128.4414941
135  38.9784976
136  47.8681853
137  56.5552263
138  52.6330415
139  63.6887630
140  54.5192809
141 153.9813108
142  67.3042478
143  71.6443692
144  48.0480754
145  70.5613875
146  19.6409531
147  74.0130735
148  36.6854652
149  82.2199326
150  25.2402524
151  57.1759865
152  73.9204808
153  71.9698205
154  79.2150558
155  39.7829481
156  73.0716676
157  34.8621573
158 112.1769920
159  45.2198814
160  79.6475715
161  59.9084573
162  67.8699683
163  89.4026635
164 143.5744398
165 141.0363210
166  59.6556119
167  31.2103381
168  57.9933141
169  74.8360370
170 108.6727570
171  78.1318329
172  72.0583145
173 216.2827762
174 121.4483874
175  19.6583014
176  51.5111084
177  64.4297571
178  34.9282768
179  34.1413486
180  52.2789295
181  55.2791448
182  51.3956234
183  88.9436840
184  60.5301515
185  72.0956385
186  68.0334461
187 167.7150411
188  79.5236227
189  88.7663169
190 107.0139596
191  84.8582289
192  23.6324440
193  28.5023365
194  48.9339783
195  68.4684320
196  68.6961935
197  17.7674981
198  55.6132378
199  84.3077505
200 102.9240691
201  37.7408894
202  27.6968677
203  53.1509077
204  89.0877447
205  55.6892779
206  26.2918268
207  51.0226949
208  46.3019214
209  96.9827547
210  58.9711892
211  75.1042635
212  52.2981673
213  70.4331390
214 120.2950007
215  53.9998798
216  30.2496818
217  38.1692378
218  54.4569331
219  95.2668932
220 100.5901469
221  49.6676537
222  53.7248883
223  39.9167562
224  96.3776627
225  75.3164597
226 118.1879058
227  57.7844432
228 220.6942183
229  82.2507653
230  90.9046856
231  91.5620846
232  61.0939697
233  49.0669026
234  69.1646421
235  45.0162202
236 110.0200061
237  55.7036153
238  52.4814887
239  85.6748799
240  75.7926795
241  50.3440447
242  57.0144100
243  35.5475187
244  28.9814123
245  33.0722825
246  54.0833885
247  32.0369082
248  63.8488595
249  16.1143170
250  44.1173087
251  40.8426739
252  87.6827647
253  46.4316880
254  62.7415613
255 114.3592705
256 168.1576484
257  59.1927970
258 107.1126999
259  91.5921246
260  43.8730244
261  93.2190909
262  65.9403041
263  81.4435792
264  43.9471543
265  53.5850714
266 158.6539096
267 121.2368263
268 123.8153749
269 111.5639690
270  46.4971916
271  54.2536820
272  88.5520554
273  89.0878716
274  24.2952980

$fit
$fit$method
[1] "REML"

$fit$convergence
[1] TRUE

$fit$iterations
[1] 6

$fit$estcoef
                beta   std.error    tvalue      pvalue
area     -0.01236461 0.002071297 -5.969498 2.37984e-09
workdays  0.49978791 0.012429599 40.209495 0.00000e+00

$fit$refvar
[1] 69.74899

$fit$spatialcorr
[1] 0.6142697

$fit$goodness
  loglike       AIC       BIC 
-1210.200  2428.401  2442.853 

sae documentation built on March 26, 2020, 7:52 p.m.