View source: R/ratioest_strata.r
ratioest_strata | R Documentation |
Computes the ratio estimator of the population total for a stratified design. The ratio estimator of a total is the sum of ratio estimator in each stratum.
ratioest_strata(y,x,TX_strata,pik,strata,description=FALSE)
y |
vector of the variable of interest; its length is equal to n, the sample size. |
x |
vector of auxiliary information; its length is equal to n, the sample size. |
TX_strata |
vector of population x-total in each stratum; its length is equal to the number of strata. |
pik |
vector of the first-order inclusion probabilities; its length is equal to n, the sample size. |
strata |
vector of size n, with elements indicating the unit stratum. |
description |
if TRUE, the ratio estimator in each stratum is printed; by default, it is FALSE. |
The function returns the value of the ratio estimator.
ratioest
###########
# Example 1
###########
# uses MU284 data as population with the 'REG' variable for stratification
data(MU284)
# there are 3 outliers which are deleted from the population
MU281=MU284[MU284$RMT85<=3000,]
attach(MU281)
# computes the inclusion probabilities using the variable P85
# sample size 120
pik=inclusionprobabilities(P85,120)
# defines the variable of interest
y=RMT85
# defines the auxiliary information
x=CS82
# computes the population stratum sizes
table(REG)
# not run
# 1 2 3 4 5 6 7 8
# 24 48 32 37 55 41 15 29
# a sample is drawn in each region
# the sample stratum sizes are given by size=c(4,10,8,4,6,4,6,7)
s=strata(MU281,c("REG"),size=c(4,10,8,4,6,4,6,7), method="systematic",pik=P85)
# extracts the observed data
MU281sample=getdata(MU281,s)
# computes the population x-totals in each stratum
TX_strata=as.vector(tapply(CS82,list(REG),FUN=sum))
# computes the ratio estimator
ratioest_strata(MU281sample$RMT85,MU281sample$CS82,TX_strata,
MU281sample$Prob,MU281sample$Stratum)
detach(MU281)
###########
# Example 2
###########
# this is an artificial example (see Example 1 in the 'strata' function)
# there are 4 columns: state, region, income and aux
# 'income' is the variable of interest, and 'aux' is the auxiliary information
# which is correlated to the income
data=rbind(matrix(rep("nc",165),165,1,byrow=TRUE),matrix(rep("sc",70),70,1,byrow=TRUE))
data=cbind.data.frame(data,c(rep(1,100), rep(2,50), rep(3,15), rep(1,30),rep(2,40)),
1000*runif(235))
names(data)=c("state","region","income")
attach(data)
aux=income+rnorm(length(income),0,1)
data=cbind.data.frame(data,aux)
# computes the population stratum sizes
table(data$region,data$state)
# not run
# nc sc
# 1 100 30
# 2 50 40
# 3 15 0
# there are 5 cells with non-zero values; one draws 5 samples (1 sample in each stratum)
# the sample stratum sizes are 10,5,10,4,6, respectively
# the method is 'srswor' (equal probability, without replacement)
s=strata(data,c("region","state"),size=c(10,5,10,4,6), method="srswor")
# extracts the observed data
xx=getdata(data,s)
# computes the population x-total for each stratum
TX_strata=na.omit(as.vector(tapply(aux,list(region,state),FUN=sum)))
# computes the ratio estimator
ratioest_strata(xx$income,xx$aux,TX_strata,xx$Prob,xx$Stratum,description=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.