Nothing
#' Summarise Spatial
#'
#' @param spatial_list list of spatial data frames with `markers` column names
#' @param markers names of columns, probably cell types, that contain 1s and 0s representing positive/negative assignments
#'
#' @return data frome with summary counts and proportions for the markers in each spatial data frame
#' @export
#'
#'
SummariseSpatial = function(spatial_list, markers){
#find cell frequency for each data frame in the spatial list
out = lapply(seq(spatial_list), function(spat_num){
spat = spatial_list[[spat_num]] %>%
#find total number of rows in dataframe
dplyr::mutate(`Total Cells` = dplyr::n()) %>%
#group by to maintain total cell count
dplyr::group_by(`Total Cells`) %>%
#find number of cells for each marker
dplyr::summarise(dplyr::across(!!markers, ~sum(.x))) %>%
#calculate the proportion of the different markers in the spatial data
dplyr::mutate(dplyr::across(!!markers, ~ .x/`Total Cells` * 100, .names = "% {.col}")) %>%
#add a column for which spatial data frame it came from
dplyr::mutate(`Sample Tag` = paste("Spatial Data", spat_num), .before = 1)
return(spat)
}) %>%
#bind the new data together
do.call(dplyr::bind_rows, .)
#return data
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.