View source: R/drawPosteriorParallel.R
drawPosteriorParallel | R Documentation |
drawPosteriorParallel
draws from a posterior predictive distribution.
drawPosteriorParallel(draws, Z, Prior, Mcmc)
draws |
(list) - a list of length s where each sublist contains compdraw, |
Z |
(matrix) - (optional) an |
Prior |
(list) - (optional) a list of optional parameters 'v' and 'nu' |
Mcmc |
(list) - a list containing 'R' and optionally 'keep' |
A list containing:
betadraw: A matrix of size R \times nvar
containing the drawn beta
values from the Gibbs sampling procedure.
Federico Bumbaca, Leeds School of Business, University of Colorado Boulder, federico.bumbaca@colorado.edu
Federico Bumbaca, federico.bumbaca@colorado.edu
Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020). Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models. Journal of Marketing Research, 57(6), 999-1018.
s=1
R=2000
nreg = 2000
nobs=5 #number of observations
nvar=3 #columns
nz=2
Z=NULL
Delta=matrix(c(1,0,1,0,1,2),ncol=nz)
tau0=1
iota=c(rep(1,nobs))
## create arguments for rmixture
#Default
tcomps=NULL
a = diag(1, nrow=3)
tcomps[[1]] = list(mu=c(0,-1,-2),rooti=a)
tpvec = 1
ncomp=length(tcomps)
regdata=NULL
betas=matrix(double(nreg*nvar),ncol=nvar)
tind=double(nreg)
for (reg in 1:nreg) {
tempout=bayesm::rmixture(1,tpvec,tcomps)
if (is.null(Z)){
betas[reg,]= as.vector(tempout$x)
}else{
betas[reg,]=Delta%*%Z[reg,]+as.vector(tempout$x)}
tind[reg]=tempout$z
X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
tau=tau0*runif(1,min=0.5,max=1)
y=X%*%betas[reg,]+sqrt(tau)*rnorm(nobs)
regdata[[reg]]=list(y=y,X=X,beta=betas[reg,],tau=tau)
}
Prior1=list(ncomp=ncomp)
keep=1
Mcmc1=list(R=R,keep=keep)
Data1=list(list(regdata=regdata,Z=Z))
Data2 = partition_data(Data1, s)
draws = parallel::mclapply(Data2, FUN = rhierLinearMixtureParallel, Prior = Prior1, Mcmc = Mcmc1,
mc.cores = s, mc.set.seed = TRUE)
out = parallel::mclapply(draws,FUN=drawPosteriorParallel,
Z=Z, Prior = Prior1, Mcmc = Mcmc1, mc.cores=s,
mc.set.seed = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.