View source: R/rhierLinearMixtureParallel.R
| rhierLinearMixtureParallel | R Documentation |
rhierLinearMixtureParallel implements a MCMC algorithm for hierarchical linear model with a mixture of normals heterogeneity distribution.
rhierLinearMixtureParallel(Data, Prior, Mcmc, verbose = FALSE)
Data |
A list containing: 'regdata' - A |
Prior |
A list with one required parameter: 'ncomp', and optional parameters: 'deltabar', 'Ad', 'mubar', 'Amu', 'nu', 'V', 'nu.e', and 'ssq'. |
Mcmc |
A list with one required parameter: 'R'-number of iterations, and optional parameters: 'keep' and 'nprint'. |
verbose |
If |
nreg regression equations with nvar as the number of X vars in each equation
y_i = X_i\beta_i + e_i with e_i \sim N(0, \tau_i)
\tau_i \sim nu.e*ssq_i/\chi^2_{nu.e} where \tau_i is the variance of e_i
B = Z\Delta + U or \beta_i = \Delta' Z[i,]' + u_i
\Delta is an nz \times nvar matrix
Z should not include an intercept and should be centered for ease of interpretation.
The mean of each of the nreg \betas is the mean of the normal mixture.
Use summary() to compute this mean from the compdraw output.
u_i \sim N(\mu_{ind}, \Sigma_{ind})
ind \sim multinomial(pvec)
pvec \sim dirichlet(a)
delta = vec(\Delta) \sim N(deltabar, A_d^{-1})
\mu_j \sim N(mubar, \Sigma_j(x) Amu^{-1})
\Sigma_j \sim IW(nu, V)
Be careful in assessing the prior parameter Amu: 0.01 can be too small for some applications.
See chapter 5 of Rossi et al for full discussion.
Data = list(regdata, Z) [Z optional]
regdata: | A nreg size list of regdata |
regdata[[i]]$X: | n_i \times nvar design matrix for equation i |
regdata[[i]]$y: | n_i \times 1 vector of observations for equation i |
Z: | An (nreg) \times nz matrix of unit characteristics
|
Prior = list(deltabar, Ad, mubar, Amu, nu.e, V, ssq, ncomp) [all but ncomp are optional]
deltabar: | (nz \times nvar) \times 1 vector of prior means (def: 0) |
Ad: | prior precision matrix for vec(D) (def: 0.01*I) |
mubar: | nvar \times 1 prior mean vector for normal component mean (def: 0) |
Amu: | prior precision for normal component mean (def: 0.01) |
nu.e: | d.f. parameter for regression error variance prior (def: 3) |
V: | PDS location parameter for IW prior on normal component Sigma (def: nu*I) |
ssq: | scale parameter for regression error variance prior (def: var(y_i)) |
ncomp: | number of components used in normal mixture |
Mcmc = list(R, keep, nprint) [only R required]
R: | number of MCMC draws |
keep: | MCMC thinning parameter -- keep every keepth draw (def: 1) |
nprint: | print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print) |
A list of sharded partitions where each partition contains the following:
compdraw |
A list (length: R/keep) where each list contains 'mu' (vector, length: 'ncomp') and 'rooti' (matrix, shape: ncomp |
probdraw |
A |
Deltadraw |
A |
Federico Bumbaca, Leeds School of Business, University of Colorado Boulder, federico.bumbaca@colorado.edu
Bumbaca, Federico (Rico), Sanjog Misra, and Peter E. Rossi (2020), "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models", Journal of Marketing Research, 57(6), 999-1018.
Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
partition_data,
drawPosteriorParallel,
combine_draws,
rheteroLinearIndepMetrop
######### Single Component with rhierLinearMixtureParallel########
R = 500
nreg=1000
nobs=5 #number of observations
nvar=3 #columns
nz=2
Z=matrix(runif(nreg*nz),ncol=nz)
Z=t(t(Z)-apply(Z,2,mean))
Delta=matrix(c(1,-1,2,0,1,0),ncol=nz)
tau0=.1
iota=c(rep(1,nobs))
#Default
tcomps=NULL
a=matrix(c(1,0,0,0.5773503,1.1547005,0,-0.4082483,0.4082483,1.2247449),ncol=3)
tcomps[[1]]=list(mu=c(0,-1,-2),rooti=a)
tpvec=c(1)
regdata=NULL
betas=matrix(double(nreg*nvar),ncol=nvar)
tind=double(nreg)
for (reg in 1:nreg) {
tempout=bayesm::rmixture(1,tpvec,tcomps)
if (is.null(Z)){
betas[reg,]= as.vector(tempout$x)
}else{
betas[reg,]=Delta %*% Z[reg,]+as.vector(tempout$x)}
tind[reg]=tempout$z
X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
tau=tau0*runif(1,min=0.5,max=1)
y=X %*% betas[reg,]+sqrt(tau)*rnorm(nobs)
regdata[[reg]]=list(y=y,X=X,beta=betas[reg,],tau=tau)
}
Data1=list(list(regdata=regdata,Z=Z))
s = 1
Data2=scalablebayesm::partition_data(Data1,s=s)
Prior1=list(ncomp=1)
Mcmc1=list(R=R,keep=1)
out2 = parallel::mclapply(Data2, FUN = rhierLinearMixtureParallel, Prior = Prior1,
Mcmc = Mcmc1, mc.cores = s, mc.set.seed = FALSE)
######### Multiple Components with rhierLinearMixtureParallel########
R = 500
set.seed(66)
nreg=1000
nobs=5 #number of observations
nvar=3 #columns
nz=2
Z=matrix(runif(nreg*nz),ncol=nz)
Z=t(t(Z)-apply(Z,2,mean))
Delta=matrix(c(1,-1,2,0,1,0),ncol=nz)
tau0=.1
iota=c(rep(1,nobs))
#Default
tcomps=NULL
a=matrix(c(1,0,0,0.5773503,1.1547005,0,-0.4082483,0.4082483,1.2247449),ncol=3)
tcomps[[1]]=list(mu=c(0,-1,-2),rooti=a)
tcomps[[2]]=list(mu=c(0,-1,-2)*2,rooti=a)
tcomps[[3]]=list(mu=c(0,-1,-2)*4,rooti=a)
tpvec=c(.4,.2,.4)
regdata=NULL
betas=matrix(double(nreg*nvar),ncol=nvar)
tind=double(nreg)
for (reg in 1:nreg) {
tempout=bayesm::rmixture(1,tpvec,tcomps)
if (is.null(Z)){
betas[reg,]= as.vector(tempout$x)
}else{
betas[reg,]=Delta %*% Z[reg,]+as.vector(tempout$x)}
tind[reg]=tempout$z
X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
tau=tau0*runif(1,min=0.5,max=1)
y=X %*% betas[reg,]+sqrt(tau)*rnorm(nobs)
regdata[[reg]]=list(y=y,X=X,beta=betas[reg,],tau=tau)
}
Data1=list(list(regdata=regdata,Z=Z))
s = 1
Data2=scalablebayesm::partition_data(Data1, s=s)
Prior1=list(ncomp=3)
Mcmc1=list(R=R,keep=1)
set.seed(1)
out2 = parallel::mclapply(Data2, FUN = rhierLinearMixtureParallel, Prior = Prior1,
Mcmc = Mcmc1, mc.cores = s, mc.set.seed = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.