View source: R/rheteroLinearIndepMetrop.R
rheteroLinearIndepMetrop | R Documentation |
rheteroLinearIndepMetrop
implements an Independence Metropolis-Hastings algorithm with a Gibbs sampler.
rheteroLinearIndepMetrop(Data, betadraws, Mcmc, Prior)
Data |
A list of data partitions where each partition includes: 'regdata' - A |
betadraws |
A list of betadraws returned from either |
Mcmc |
A list with one required parameter: 'R'-number of iterations, and optional parameters: 'keep' and 'nprint'. |
Prior |
A list with one required parameter: 'ncomp', and optional parameters: 'deltabar', 'Ad', 'mubar', 'Amu', 'nu', 'V', 'nu.e', and 'ssq'. |
nreg
regression equations with nvar
as the number of X
vars in each equation
y_i = X_i\beta_i + e_i
with e_i
\sim
N(0, \tau_i)
\tau_i
\sim
nu.e*ssq_i/\chi^2_{nu.e}
where \tau_i
is the variance of e_i
B = Z\Delta + U
or \beta_i = \Delta' Z[i,]' + u_i
\Delta
is an nz \times nvar
matrix
u_i
\sim
N(\mu_{ind}, \Sigma_{ind})
delta = vec(\Delta)
\sim
N(deltabar, A_d^{-1})
\mu_j
\sim
N(mubar, \Sigma_j(x) Amu^{-1})
\Sigma_j
\sim
IW(nu, V)
\theta_i = (\mu_i, \Sigma_i)
\sim
DP(G_0(\lambda), alpha)
G_0(\lambda):
\mu_i | \Sigma_i
\sim
N(0, \Sigma_i (x) a^{-1})
\Sigma_i
\sim
IW(nu, nu*v*I)
delta = vec(\Delta)
\sim
N(deltabar, A_d^{-1})
\lambda(a, nu, v):
a
\sim
uniform[alim[1], alimb[2]]
nu
\sim
dim(data)-1 + exp(z)
z
\sim
uniform[dim(data)-1+nulim[1], nulim[2]]
v
\sim
uniform[vlim[1], vlim[2]]
Z
should not include an intercept and should be centered for ease of interpretation.
The mean of each of the nreg
\beta
s is the mean of the normal mixture.
Use summary()
to compute this mean from the compdraw
output.
The prior on \Sigma_i
is parameterized such that mode(\Sigma) = nu/(nu+2) vI
. The support of nu enforces a non-degenerate IW density; nulim[1] > 0
The default choices of alim, nulim, and vlim determine the location and approximate size of candidate "atoms" or possible normal components. The defaults are sensible given a reasonable scaling of the X variables. You want to insure that alim is set for a wide enough range of values (remember a is a precision parameter) and the v is big enough to propose Sigma matrices wide enough to cover the data range.
A careful analyst should look at the posterior distribution of a, nu, v to make sure that the support is set correctly in alim, nulim, vlim. In other words, if we see the posterior bunched up at one end of these support ranges, we should widen the range and rerun.
If you want to force the procedure to use many small atoms, then set nulim to consider only large values and set vlim to consider only small scaling constants. Set alphamax to a large number. This will create a very "lumpy" density estimate somewhat like the classical Kernel density estimates. Of course, this is not advised if you have a prior belief that densities are relatively smooth.
Data = list(regdata, Z)
[Z
optional]
regdata: | A nreg/s_shard size list of regdata |
regdata[[i]]$X: | n_i \times nvar design matrix for equation i |
regdata[[i]]$y: | n_i \times 1 vector of observations for equation i |
Z: | A list of s partitions where each partition include (nreg/s_shard) \times nz matrix of unit characteristics
|
betadraw:
A matrix with R
rows and nvar
columns of beta draws.
Prior = list(deltabar, Ad, Prioralphalist, lambda_hyper, nu, V, nu_e, mubar, Amu, ssq, ncomp)
[all but ncomp
are optional]
deltabar: | (nz \times nvar) \times 1 vector of prior means (def: 0) |
Ad: | prior precision matrix for vec(D) (def: 0.01*I) |
mubar: | nvar \times 1 prior mean vector for normal component mean (def: 0) |
Amu: | prior precision for normal component mean (def: 0.01) |
nu.e: | d.f. parameter for regression error variance prior (def: 3) |
V: | PDS location parameter for IW prior on normal component Sigma (def: nu*I) |
ssq: | scale parameter for regression error variance prior (def: var(y_i) ) |
ncomp: | number of components used in normal mixture |
Mcmc = list(R, keep, nprint)
[only R
required]
R: | number of MCMC draws |
keep: | MCMC thinning parameter -- keep every keep th draw (def: 1) |
nprint: | print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print) |
A list containing:
betadraw: A matrix of size R \times nvar
containing the drawn beta
values from the Gibbs sampling procedure.
Federico Bumbaca, Leeds School of Business, University of Colorado Boulder, federico.bumbaca@colorado.edu
Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020). Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models. Journal of Marketing Research, 57(6), 999-1018.
rhierLinearMixtureParallel
,
rheteroMnlIndepMetrop
######### Single Component with rhierLinearMixtureParallel########
R = 500
set.seed(66)
nreg=1000
nobs=5 #number of observations
nvar=3 #columns
nz=2
Z=matrix(runif(nreg*nz),ncol=nz)
Z=t(t(Z)-apply(Z,2,mean))
Delta=matrix(c(1,-1,2,0,1,0),ncol=nz)
tau0=.1
iota=c(rep(1,nobs))
#Default
tcomps=NULL
a=matrix(c(1,0,0,0.5773503,1.1547005,0,-0.4082483,0.4082483,1.2247449),ncol=3)
tcomps[[1]]=list(mu=c(0,-1,-2),rooti=a)
tpvec=c(1)
regdata=NULL
betas=matrix(double(nreg*nvar),ncol=nvar)
tind=double(nreg)
for (reg in 1:nreg) {
tempout=bayesm::rmixture(1,tpvec,tcomps)
if (is.null(Z)){
betas[reg,]= as.vector(tempout$x)
}else{
betas[reg,]=Delta %*% Z[reg,]+as.vector(tempout$x)}
tind[reg]=tempout$z
X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
tau=tau0*runif(1,min=0.5,max=1)
y=X %*% betas[reg,]+sqrt(tau)*rnorm(nobs)
regdata[[reg]]=list(y=y,X=X,beta=betas[reg,],tau=tau)
}
Data1=list(list(regdata=regdata,Z=Z))
s = 1
Data2=scalablebayesm::partition_data(Data1,s=s)
Prior1=list(ncomp=1)
Mcmc1=list(R=R,keep=1)
set.seed(1)
out2 = parallel::mclapply(Data2, FUN = rhierLinearMixtureParallel,
Prior = Prior1, Mcmc = Mcmc1,
mc.cores = s, mc.set.seed = FALSE)
betadraws = parallel::mclapply(out2,FUN=drawPosteriorParallel,Z=Z,
Prior = Prior1, Mcmc = Mcmc1, mc.cores=s,mc.set.seed = FALSE)
betadraws = combine_draws(betadraws, R)
out_indep = parallel::mclapply(Data2, FUN=rheteroLinearIndepMetrop,
betadraws = betadraws, Mcmc = Mcmc1, Prior = Prior1, mc.cores = s, mc.set.seed = FALSE)
######### Multiple Components with rhierLinearMixtureParallel########
R = 500
set.seed(66)
nreg=1000
nobs=5 #number of observations
nvar=3 #columns
nz=2
Z=matrix(runif(nreg*nz),ncol=nz)
Z=t(t(Z)-apply(Z,2,mean))
Delta=matrix(c(1,-1,2,0,1,0),ncol=nz)
tau0=.1
iota=c(rep(1,nobs))
#Default
tcomps=NULL
a=matrix(c(1,0,0,0.5773503,1.1547005,0,-0.4082483,0.4082483,1.2247449),ncol=3)
tcomps[[1]]=list(mu=c(0,-1,-2),rooti=a)
tcomps[[2]]=list(mu=c(0,-1,-2)*2,rooti=a)
tcomps[[3]]=list(mu=c(0,-1,-2)*4,rooti=a)
tpvec=c(.4,.2,.4)
regdata=NULL
betas=matrix(double(nreg*nvar),ncol=nvar)
tind=double(nreg)
for (reg in 1:nreg) {
tempout=bayesm::rmixture(1,tpvec,tcomps)
if (is.null(Z)){
betas[reg,]= as.vector(tempout$x)
}else{
betas[reg,]=Delta %*% Z[reg,]+as.vector(tempout$x)}
tind[reg]=tempout$z
X=cbind(iota,matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
tau=tau0*runif(1,min=0.5,max=1)
y=X %*% betas[reg,]+sqrt(tau)*rnorm(nobs)
regdata[[reg]]=list(y=y,X=X,beta=betas[reg,],tau=tau)
}
Data1=list(list(regdata=regdata,Z=Z))
s = 1
Data2=scalablebayesm::partition_data(Data1, s=s)
Prior1=list(ncomp=3)
Mcmc1=list(R=R,keep=1)
set.seed(1)
out2 = parallel::mclapply(Data2, FUN = rhierLinearMixtureParallel, Prior = Prior1, Mcmc = Mcmc1,
mc.cores = s, mc.set.seed = FALSE)
betadraws = parallel::mclapply(out2,FUN=drawPosteriorParallel,Z=Z,
Prior = Prior1, Mcmc = Mcmc1, mc.cores=s,mc.set.seed = TRUE)
betadraws = combine_draws(betadraws, R)
out_indep = parallel::mclapply(Data2, FUN=rheteroLinearIndepMetrop,
betadraws = betadraws, Mcmc = Mcmc1, Prior = Prior1, mc.cores = s, mc.set.seed = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.