Routines for generalized additive modelling under shape constraints on the component functions of the linear predictor. Models can contain multiple shape constrained (univariate and/or bivariate) and unconstrained terms. The routines of gam() in package 'mgcv' are used for setting up the model matrix, printing and plotting the results. Penalized likelihood maximization based on Newton-Raphson method is used to fit a model with multiple smoothing parameter selection by GCV or UBRE/AIC.

Author | Natalya Pya <nat.pya@gmail.com> |

Date of publication | 2016-06-02 09:43:01 |

Maintainer | Natalya Pya <nat.pya@gmail.com> |

License | GPL (>= 2) |

Version | 1.2-0 |

**anova.scam:** Approximate hypothesis tests related to SCAM fits

**bfgs_gcv.ubre:** Multiple Smoothing Parameter Estimation by GCV/UBRE

**check.analytical:** Checking the analytical gradient of the GCV/UBRE score

**derivative.scam:** Derivative of the univariate smooth model terms

**gcv.ubre_grad:** The GCV/UBRE score value and its gradient

**marginal.matrices.tescv.ps:** Constructs marginal model matrices for "tescv" and "tescx"...

**marginal.matrices.tesmi1.ps:** Constructs marginal model matrices for "tesmi1" and "tesmd1"...

**marginal.matrices.tesmi2.ps:** Constructs marginal model matrices for "tesmi2" and "tesmd2"...

**plot.scam:** SCAM plotting

**Predict.matrix.mpi.smooth:** Predict matrix method functions for SCAMs

**predict.scam:** Prediction from fitted SCAM model

**print.scam:** Print a SCAM object

**residuals.scam:** SCAM residuals

**scam:** Shape constrained additive models (SCAM) and integrated...

**scam.check:** Some diagnostics for a fitted scam object

**scam.fit:** Newton-Raphson method to fit SCAM

**scam-package:** Shape Constrained Additive Models

**shape.constrained.smooth.terms:** Shape preserving smooth terms in SCAM

**smooth.construct.cx.smooth.spec:** Constructor for convex P-splines in SCAMs

**smooth.construct.mdcv.smooth.spec:** Constructor for monotone decreasing and concave P-splines in...

**smooth.construct.mdcx.smooth.spec:** Constructor for monotone decreasing and convex P-splines in...

**smooth.construct.micv.smooth.spec:** Constructor for monotone increasing and concave P-splines in...

**smooth.construct.micx.smooth.spec:** Constructor for monotone increasing and convex P-splines in...

**smooth.construct.mpd.smooth.spec:** Constructor for monotone decreasing P-splines in SCAMs

**smooth.construct.mpi.smooth.spec:** Constructor for monotone increasing P-splines in SCAMs

**smooth.construct.tedecv.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.tedecx.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.tedmd.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.tedmi.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.temicv.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.temicx.smooth.spec:** Tensor product smoothing constructor for bivariate function...

**smooth.construct.tescv.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**smooth.construct.tescx.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**smooth.construct.tesmd1.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**smooth.construct.tesmd2.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**smooth.construct.tesmi1.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**smooth.construct.tesmi2.smooth.spec:** Tensor product smoothing constructor for a bivariate function...

**summary.scam:** Summary for a SCAM fit

**vis.scam:** Visualization of SCAM objects

scam

scam/NAMESPACE

scam/R

scam/R/vis.scam.r

scam/R/plot.r

scam/R/derivative.scam.r

scam/R/bivar.smooth.const.R
scam/R/bfgs.R
scam/R/residuals.scam.R
scam/R/print.scam.R
scam/R/derivative.smooth.R
scam/R/scam.r

scam/R/check.analytical.R
scam/R/predict.scam.R
scam/R/summary.scam.R
scam/R/estimate.scam.R
scam/R/scam.check.R
scam/R/uni.smooth.const.R
scam/MD5

scam/DESCRIPTION

scam/ChangeLog

scam/man

scam/man/smooth.construct.temicx.smooth.spec.Rd
scam/man/plot.scam.Rd
scam/man/predict.scam.Rd
scam/man/gcv.ubre_grad.Rd
scam/man/smooth.construct.micx.smooth.spec.Rd
scam/man/smooth.construct.tedmd.smooth.spec.Rd
scam/man/smooth.construct.tesmd1.smooth.spec.Rd
scam/man/Predict.matrix.mpi.smooth.Rd
scam/man/smooth.construct.mpi.smooth.spec.Rd
scam/man/smooth.construct.cv.smooth.spec.rd

scam/man/smooth.construct.mdcx.smooth.spec.Rd
scam/man/scam.Rd
scam/man/smooth.construct.mdcv.smooth.spec.Rd
scam/man/marginal.matrices.tesmi1.ps.Rd
scam/man/bfgs_gcv.ubre.Rd
scam/man/smooth.construct.cx.smooth.spec.Rd
scam/man/smooth.construct.temicv.smooth.spec.Rd
scam/man/marginal.matrices.tescv.ps.Rd
scam/man/smooth.construct.tesmd2.smooth.spec.Rd
scam/man/smooth.construct.tedecv.smooth.spec.Rd
scam/man/scam.fit.Rd
scam/man/scam.check.Rd
scam/man/smooth.construct.micv.smooth.spec.Rd
scam/man/smooth.construct.tesmi1.smooth.spec.Rd
scam/man/smooth.construct.tedmi.smooth.spec.Rd
scam/man/derivative.scam.Rd
scam/man/marginal.matrices.tesmi2.ps.Rd
scam/man/residuals.scam.Rd
scam/man/print.scam.Rd
scam/man/shape.constrained.smooth.terms.Rd
scam/man/smooth.construct.tedecx.smooth.spec.Rd
scam/man/smooth.construct.tescx.smooth.spec.Rd
scam/man/check.analytical.Rd
scam/man/smooth.construct.tesmi2.smooth.spec.Rd
scam/man/smooth.construct.mpd.smooth.spec.Rd
scam/man/smooth.construct.tescv.smooth.spec.Rd
scam/man/summary.scam.Rd
scam/man/anova.scam.Rd
scam/man/vis.scam.Rd
scam/man/scam-package.Rd
Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.