View source: R/uni.smooth.const-with-po.r
smooth.construct.cx.smooth.spec | R Documentation |
This is a special method function
for creating smooths subject to convexity constraint which is built by
the mgcv
constructor function for smooth terms, smooth.construct
.
It is constructed using convex P-splines. This smooth is specified via model terms such as
s(x,k,bs="cx",m=2)
,
where k
denotes the basis dimension and m+1
is the order of the B-spline basis.
cxBy.smooth.spec
works similar to cx.smooth.spec
but without applying an identifiability constraint ('zero intercept' constraint). cxBy.smooth.spec
should be used when the smooth term has a numeric by
variable that takes more than one value. In such cases, the smooth terms are fully identifiable without a 'zero intercept' constraint, so they are left unconstrained. This smooth is specified as
s(x,by=z,bs="cxBy")
. See an example below.
However a factor by
variable requires identifiability constraints, so s(x,by=fac,bs="cx")
is used in this case.
## S3 method for class 'cx.smooth.spec'
smooth.construct(object, data, knots)
## S3 method for class 'cxBy.smooth.spec'
smooth.construct(object, data, knots)
object |
A smooth specification object, generated by an |
data |
A data frame or list containing the data required by this term,
with names given by |
knots |
An optional list containing the knots supplied for basis setup.
If it is |
An object of class "cx.smooth"
, "cxBy.smooth"
.
Natalya Pya <nat.pya@gmail.com>
Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3), 543-559
Pya, N. (2010) Additive models with shape constraints. PhD thesis. University of Bath. Department of Mathematical Sciences
smooth.construct.cv.smooth.spec
,
smooth.construct.mpi.smooth.spec
,
smooth.construct.mdcv.smooth.spec
,
smooth.construct.mdcx.smooth.spec
,
smooth.construct.micv.smooth.spec
,
smooth.construct.mpd.smooth.spec
## Not run:
## Convex SCOP-splines example...
## simulating data...
require(scam)
set.seed(16)
n <- 100
x <- sort(2*runif(n)-1)
f <- 4*x^2
y <- f + rnorm(n)*0.4
dat <- data.frame(x=x,y=y)
b <- scam(y~s(x,k=15,bs="cx"),family=gaussian,data=dat)
## unconstrained fit...
b1 <- scam(y~s(x,k=15),family=gaussian, data=dat)
## plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit
## Poisson version...
set.seed(18)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
## fit shape constrained model ...
b <- scam(y~s(x,k=15,bs="cx"),family=poisson(link="log"),data=dat,optimizer="efs")
## unconstrained fit...
b1 <- scam(y~s(x,k=15),family=poisson(link="log"), data=dat,optimizer="efs")
## plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,exp(f)) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit
## 'by' factor example...
set.seed(9)
n <- 400
x <- sort(runif(n,-.5,.5))
f1 <- .7*x-cos(x)+3
f2 <- 20*x^2
par(mfrow=c(1,2))
plot(x,f1,type="l");plot(x,f2,type="l")
e <- rnorm(n, 0, 1.5)
fac <- as.factor(sample(1:2,n,replace=TRUE))
fac.1 <- as.numeric(fac==1)
fac.2 <- as.numeric(fac==2)
y <- f1*fac.1 + f2*fac.2 + e
dat <- data.frame(y=y,x=x,fac=fac,f1=f1,f2=f2)
b2 <- scam(y ~ fac+s(x,by=fac,bs="cx"),data=dat,optimizer="efs")
plot(b2,pages=1,scale=0)
summary(b2)
x11()
vis.scam(b2,theta=50,color="terrain")
## numeric 'by' variable example...
set.seed(6)
n <- 100
x <- sort(2*runif(n)-1)
z <- runif(n,-2,3)
f <- 4*x^2
y <- f*z + rnorm(n)*.6
dat <- data.frame(x=x,z=z,y=y)
b <- scam(y~s(x,k=15,by=z,bs="cxBy"),data=dat)
summary(b)
par(mfrow=c(1,2))
plot(b,shade=TRUE)
## unconstrained fit...
b1 <- scam(y~s(x,k=15,by=z),data=dat)
plot(b1,shade=TRUE)
summary(b1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.