Nothing
#' @noRd
#' @param p The number of dimensions
#' @param z The square root of the data values
#' @param h A single column matrix of weights for each row of data
#' @param ind A matrix of index combinations. This can be generated by `indexcombinations(p - 1)`
#' @param qind The number of different index combinations (i.e. columns of `ind`).
#' (i.e. the weight function evaluated at each measurement)
calcW11 <- function(p, z, h, ind, qind, w = rep(1, nrow(z))){
sp=p-1
A1=matrix(0,1,p-1)
for (j in 1:sp)
{
A1[j]=weighted.mean(16*(h^2)*z[,j]^6, w = w)
}
x=c(1:sp)
C1=matrix(0,1,p-1)
for (j in 1:sp)
{
C1[j]=weighted.mean(8*(h^2)*z[,j]^4, w = w)
}
AA=diag(as.vector(A1))
AB=matrix(0,sp,qind)
for (i in 1:sp)
{
for (j in 1:qind)
{
if (i==ind[1,j]){AB[i,j]=weighted.mean(16*z[,ind[1,j]]^4*z[,ind[2,j]]^2*h^2, w=w)}
if (i==ind[2,j]){AB[i,j]=weighted.mean(16*z[,ind[1,j]]^2*z[,ind[2,j]]^4*h^2, w=w)}
}
}
BB=matrix(0,qind,qind)
for (i in 1:qind)
{
for (j in 1:qind)
{
if (ind[1,i]==ind[1,j] & ind[2,i]==ind[2,j]){BB[i,j]=weighted.mean(16*z[,ind[1,j]]^4*z[,ind[2,j]]^2*h^2, w=w)+weighted.mean(16*z[,ind[1,j]]^2*z[,ind[2,j]]^4*h^2, w=w)}
else if (ind[1,i]==ind[1,j]){BB[i,j]=weighted.mean((h^2)*16*z[,ind[2,j]]^2*z[,ind[2,i]]^2*z[,ind[1,j]]^2, w=w)}
else if (ind[2,i]==ind[2,j]){BB[i,j]=weighted.mean((h^2)*16*z[,ind[1,j]]^2*z[,ind[1,i]]^2*z[,ind[2,j]]^2, w=w)}
else if (ind[1,i]==ind[2,j]){BB[i,j]=weighted.mean((h^2)*16*z[,ind[2,i]]^2*z[,ind[1,j]]^2*z[,ind[2,j]]^2, w=w)}
else if (ind[2,i]==ind[1,j]){BB[i,j]=weighted.mean((h^2)*16*z[,ind[1,i]]^2*z[,ind[2,j]]^2*z[,ind[1,j]]^2, w=w)}
}
}
AC=diag(as.vector(C1))
BC=matrix(0,qind,sp)
for (i in 1:qind)
{
for (j in 1:sp)
{
if (j==ind[1,i]){BC[i,j]=weighted.mean(h^2*z[,ind[2,i]]^2*z[,ind[1,i]]^2*8, w=w)}
else if (j==ind[2,i]){BC[i,j]=weighted.mean(h^2*z[,ind[1,i]]^2*z[,ind[2,i]]^2*8, w=w)}
}
}
C2=matrix(0,1,p-1)
for (j in 1:sp)
{
C2[j]=weighted.mean(4*(h^2)*z[,j]^2, w = w)
}
CC=diag(as.vector(C2))
AA2=AA
for (i in 1:sp)
{
for (j in 1:sp)
{
AA2[i,j]=16*weighted.mean((h^2)*z[,i]^4*z[,j]^4, w=w)
}
}
AB2=AB
for (i in 1:sp)
{
for (j in 1:qind)
{
AB2[i,j]=32*weighted.mean((h^2)*z[,i]^4*z[,ind[1,j]]^2*z[,ind[2,j]]^2, w=w)
}
}
BB2=BB
for (i in 1:qind)
{
for (j in 1:qind)
{
BB2[i,j]=64*weighted.mean((h^2)*(z[,ind[1,i]]^2*z[,ind[2,i]]^2)*(z[,ind[1,j]]^2*z[,ind[2,j]]^2), w=w)
}
}
BC2=BC
for (i in 1:qind)
{
for (j in 1:sp)
{
BC2[i,j]=16*weighted.mean((h^2)*z[,j]^2*(z[,ind[1,i]]^2*z[,ind[2,i]]^2), w=w)
}
}
AC2=AC
for (i in 1:sp)
{
for (j in 1:sp)
{
AC2[i,j]=8*weighted.mean((h^2)*z[,i]^4*z[,j]^2, w=w)
}
}
CC2=AC
for (i in 1:sp)
{
for (j in 1:sp)
{
CC2[i,j]=4*weighted.mean((h^2)*z[,i]^2*z[,j]^2, w=w)
}
}
W1=cbind(AA,AB,AC)
W2=cbind(t(AB),BB,BC)
W3=cbind(t(AC),t(BC),CC)
W0=rbind(W1,W2,W3)
W12=cbind(AA2,AB2,AC2)
W22=cbind(t(AB2),BB2,BC2)
W32=cbind(t(AC2),t(BC2),CC2)
W2=rbind(W12,W22,W32)
W=W0-W2
return(W)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.