Nothing
#' Derive an SDTM variable
#'
#' @description
#' [sdtm_assign()] is an internal function packing the same functionality as
#' [assign_no_ct()] and [assign_ct()] together but aimed at developers only.
#' As a user please use either [assign_no_ct()] or [assign_ct()].
#'
#' @param raw_dat The raw dataset (dataframe); must include the
#' variables passed in `id_vars` and `raw_var`.
#' @param raw_var The raw variable: a single string indicating the name of the
#' raw variable in `raw_dat`.
#' @param tgt_var The target SDTM variable: a single string indicating the name
#' of variable to be derived.
#' @param ct_spec Study controlled terminology specification: a dataframe with a
#' minimal set of columns, see [ct_spec_vars()] for details. This parameter is
#' optional, if left as `NULL` no controlled terminology recoding is applied.
#' @param ct_clst A codelist code indicating which subset of the controlled
#' terminology to apply in the derivation. This parameter is optional, if left
#' as `NULL`, all possible recodings in `ct_spec` are attempted.
#' @param tgt_dat Target dataset: a data frame to be merged against `raw_dat` by
#' the variables indicated in `id_vars`. This parameter is optional, see
#' section Value for how the output changes depending on this argument value.
#' @param id_vars Key variables to be used in the join between the raw dataset
#' (`raw_dat`) and the target data set (`tgt_dat`).
#'
#' @returns The returned data set depends on the value of `tgt_dat`:
#' - If no target dataset is supplied, meaning that `tgt_dat` defaults to
#' `NULL`, then the returned data set is `raw_dat`, selected for the variables
#' indicated in `id_vars`, and a new extra column: the derived variable, as
#' indicated in `tgt_var`.
#' - If the target dataset is provided, then it is merged with the raw data set
#' `raw_dat` by the variables indicated in `id_vars`, with a new column: the
#' derived variable, as indicated in `tgt_var`.
#'
#'
#' @importFrom rlang :=
#' @keywords internal
sdtm_assign <- function(tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
ct_spec = NULL,
ct_clst = NULL,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat, required_vars = rlang::syms(id_vars), optional = TRUE)
assert_ct_spec(ct_spec, optional = TRUE)
assert_ct_clst(ct_spec = ct_spec, ct_clst = ct_clst, optional = TRUE)
join_dat <-
raw_dat |>
dplyr::select(dplyr::all_of(c(id_vars, raw_var))) |>
sdtm_join(tgt_dat = tgt_dat, id_vars = id_vars)
# Recode the raw variable following terminology.
tgt_val <- ct_map(join_dat[[raw_var]], ct_spec = ct_spec, ct_clst = ct_clst)
# Current target values
cur_tgt_val <- join_dat[[tgt_var]] %||% as.vector(NA, mode = typeof(tgt_val))
join_dat |>
mutate("{tgt_var}" := dplyr::coalesce(cur_tgt_val, tgt_val)) |> # nolint object_name_linter()
dplyr::select(-dplyr::any_of(setdiff(raw_var, tgt_var))) |>
dplyr::relocate(dplyr::all_of(tgt_var), .after = dplyr::last_col())
}
#' Derive an SDTM variable
#'
#' @description
#' - [assign_no_ct()] maps a variable in a raw dataset to a target SDTM
#' variable that has no terminology restrictions.
#'
#' - [assign_ct()] maps a variable in a raw dataset to a target SDTM variable
#' following controlled terminology recoding.
#'
#' @param raw_dat The raw dataset (dataframe); must include the
#' variables passed in `id_vars` and `raw_var`.
#' @param raw_var The raw variable: a single string indicating the name of the
#' raw variable in `raw_dat`.
#' @param tgt_var The target SDTM variable: a single string indicating the name
#' of variable to be derived.
#' @param ct_spec Study controlled terminology specification: a dataframe with a
#' minimal set of columns, see [ct_spec_vars()] for details.
#' @param ct_clst A codelist code indicating which subset of the controlled
#' terminology to apply in the derivation.
#' @param tgt_dat Target dataset: a data frame to be merged against `raw_dat` by
#' the variables indicated in `id_vars`. This parameter is optional, see
#' section Value for how the output changes depending on this argument value.
#' @param id_vars Key variables to be used in the join between the raw dataset
#' (`raw_dat`) and the target data set (`raw_dat`).
#'
#' @returns The returned data set depends on the value of `tgt_dat`:
#' - If no target dataset is supplied, meaning that `tgt_dat` defaults to
#' `NULL`, then the returned data set is `raw_dat`, selected for the variables
#' indicated in `id_vars`, and a new extra column: the derived variable, as
#' indicated in `tgt_var`.
#' - If the target dataset is provided, then it is merged with the raw data set
#' `raw_dat` by the variables indicated in `id_vars`, with a new column: the
#' derived variable, as indicated in `tgt_var`.
#'
#' @examples
#'
#' md1 <-
#' tibble::tibble(
#' oak_id = 1:14,
#' raw_source = "MD1",
#' patient_number = 101:114,
#' MDIND = c(
#' "NAUSEA", "NAUSEA", "ANEMIA", "NAUSEA", "PYREXIA",
#' "VOMITINGS", "DIARHHEA", "COLD",
#' "FEVER", "LEG PAIN", "FEVER", "COLD", "COLD", "PAIN"
#' )
#' )
#'
#' assign_no_ct(
#' tgt_var = "CMINDC",
#' raw_dat = md1,
#' raw_var = "MDIND"
#' )
#'
#' cm_inter <-
#' tibble::tibble(
#' oak_id = 1:14,
#' raw_source = "MD1",
#' patient_number = 101:114,
#' CMTRT = c(
#' "BABY ASPIRIN",
#' "CORTISPORIN",
#' "ASPIRIN",
#' "DIPHENHYDRAMINE HCL",
#' "PARCETEMOL",
#' "VOMIKIND",
#' "ZENFLOX OZ",
#' "AMITRYPTYLINE",
#' "BENADRYL",
#' "DIPHENHYDRAMINE HYDROCHLORIDE",
#' "TETRACYCLINE",
#' "BENADRYL",
#' "SOMINEX",
#' "ZQUILL"
#' ),
#' CMROUTE = c(
#' "ORAL",
#' "ORAL",
#' NA,
#' "ORAL",
#' "ORAL",
#' "ORAL",
#' "INTRAMUSCULAR",
#' "INTRA-ARTERIAL",
#' NA,
#' "NON-STANDARD",
#' "RANDOM_VALUE",
#' "INTRA-ARTICULAR",
#' "TRANSDERMAL",
#' "OPHTHALMIC"
#' )
#' )
#'
#' # Controlled terminology specification
#' (ct_spec <- read_ct_spec_example("ct-01-cm"))
#'
#' assign_ct(
#' tgt_dat = cm_inter,
#' tgt_var = "CMINDC",
#' raw_dat = md1,
#' raw_var = "MDIND",
#' ct_spec = ct_spec,
#' ct_clst = "C66729"
#' )
#'
#' # Variables are derived in sequence from multiple input sources.
#' # For each target variable, only missing (`NA`) values are filled
#' # during each step—previously assigned (non-missing) values are retained.
#'
#' cm_raw <-
#' tibble::tibble(
#' oak_id = 1:4,
#' raw_source = "cm_raw",
#' patient_number = 370L + oak_id,
#' PATNUM = patient_number,
#' IT.CMTRT = c("BABY ASPIRIN", "CORTISPORIN", NA, NA),
#' IT.CMTRTOTH = c("Other Treatment - ", NA, "Other Treatment - Baby Aspirin", NA)
#' )
#'
#' cm_raw
#'
#' # Derivation of `CMTRT` first from `IT.CMTRT` and then from `IT.CMTRTOTH`.
#' assign_no_ct(
#' raw_dat = cm_raw,
#' raw_var = "IT.CMTRT",
#' tgt_var = "CMTRT"
#' ) |>
#' assign_no_ct(
#' raw_dat = cm_raw,
#' raw_var = "IT.CMTRTOTH",
#' tgt_var = "CMTRT"
#' )
#'
#' # Derivation of `CMTRT` first from `IT.CMTRTOTH` and then from `IT.CMTRT`.
#' assign_no_ct(
#' raw_dat = cm_raw,
#' raw_var = "IT.CMTRTOTH",
#' tgt_var = "CMTRT"
#' ) |>
#' assign_no_ct(
#' raw_dat = cm_raw,
#' raw_var = "IT.CMTRT",
#' tgt_var = "CMTRT"
#' )
#'
#' # Another example of variables derived in sequence from multiple input
#' # sources but now with controlled terminology remapping, in this case,
#' # CDISC Dose Unit (C71620) recoding.
#'
#' cm_raw2 <- tibble::tibble(
#' oak_id = c(1:3, 6, 8:10, 12:14),
#' raw_source = "cm_raw",
#' patient_number = c(rep(375L, 2), 376:377, rep(378L, 3), rep(379L, 3)),
#' PATNUM = patient_number,
#' `IT.DOSUO` = c(NA, NA, NA, NA, NA, "Other Dose Unit", "cap", NA, NA, NA),
#' `IT.CMDOSU` = c("mg", "Gram", NA, "Tablet", "g", "mg", NA, "IU", "mL", "%")
#' )
#'
#' assign_ct(
#' raw_dat = cm_raw2,
#' raw_var = "IT.DOSUO",
#' tgt_var = "CMDOSU",
#' ct_spec = ct_spec,
#' ct_clst = "C71620",
#' # Dose Unit
#' id_vars = oak_id_vars()
#' ) |>
#' assign_ct(
#' raw_dat = cm_raw2,
#' raw_var = "IT.CMDOSU",
#' tgt_var = "CMDOSU",
#' ct_spec = ct_spec,
#' ct_clst = "C71620",
#' id_vars = oak_id_vars()
#' )
#'
#' @name assign
NULL
#' @order 1
#' @export
#' @rdname assign
assign_no_ct <- function(tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat, required_vars = rlang::syms(id_vars), optional = TRUE)
sdtm_assign(
tgt_dat = tgt_dat,
tgt_var = tgt_var,
raw_dat = raw_dat,
raw_var = raw_var,
id_vars = id_vars
)
}
#' @order 2
#' @export
#' @rdname assign
assign_ct <- function(tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
ct_spec,
ct_clst,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat, required_vars = rlang::syms(id_vars), optional = TRUE)
sdtm_assign(
tgt_dat = tgt_dat,
tgt_var = tgt_var,
raw_dat = raw_dat,
raw_var = raw_var,
id_vars = id_vars,
ct_spec = ct_spec,
ct_clst = ct_clst
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.