Nothing
#' Derive an SDTM variable with a hardcoded value
#'
#' @description
#' [sdtm_hardcode()] is an internal function packing the same functionality as
#' [hardcode_no_ct()] and [hardcode_ct()] together but aimed at developers only.
#' As a user please use either [hardcode_no_ct()] or [hardcode_ct()].
#'
#' @param raw_dat The raw dataset (dataframe); must include the
#' variables passed in `id_vars` and `raw_var`.
#' @param raw_var The raw variable: a single string indicating the name of the
#' raw variable in `raw_dat`.
#' @param tgt_var The target SDTM variable: a single string indicating the name
#' of variable to be derived.
#' @param tgt_val The target SDTM value to be hardcoded into the variable
#' indicated in `tgt_var`.
#' @param ct_spec Study controlled terminology specification: a dataframe with a
#' minimal set of columns, see [ct_spec_vars()] for details. This parameter is
#' optional, if left as `NULL` no controlled terminology recoding is applied.
#' @param ct_clst A codelist code indicating which subset of the controlled
#' terminology to apply in the derivation. This parameter is optional, if left
#' as `NULL`, all possible recodings in `ct_spec` are attempted.
#' @param tgt_dat Target dataset: a data frame to be merged against `raw_dat` by
#' the variables indicated in `id_vars`. This parameter is optional, see
#' section Value for how the output changes depending on this argument value.
#' @param id_vars Key variables to be used in the join between the raw dataset
#' (`raw_dat`) and the target data set (`tgt_dat`).
#'
#' @returns The returned data set depends on the value of `tgt_dat`:
#' - If no target dataset is supplied, meaning that `tgt_dat` defaults to
#' `NULL`, then the returned data set is `raw_dat`, selected for the variables
#' indicated in `id_vars`, and a new extra column: the derived variable, as
#' indicated in `tgt_var`.
#' - If the target dataset is provided, then it is merged with the raw data set
#' `raw_dat` by the variables indicated in `id_vars`, with a new column: the
#' derived variable, as indicated in `tgt_var`.
#'
#' @importFrom rlang :=
#' @keywords internal
sdtm_hardcode <- function(tgt_dat = NULL,
tgt_var,
raw_dat,
raw_var,
tgt_val,
ct_spec = NULL,
ct_clst = NULL,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
admiraldev::assert_character_scalar(tgt_val)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat, required_vars = rlang::syms(id_vars), optional = TRUE)
assert_ct_spec(ct_spec, optional = TRUE)
assert_ct_clst(ct_spec = ct_spec, ct_clst = ct_clst, optional = TRUE)
join_dat <-
raw_dat |>
dplyr::select(dplyr::all_of(c(id_vars, raw_var))) |>
sdtm_join(tgt_dat = tgt_dat, id_vars = id_vars)
# Recode the hardcoded value following terminology.
tgt_val <- ct_map(tgt_val, ct_spec = ct_spec, ct_clst = ct_clst)
join_dat |>
mutate("{tgt_var}" := recode(x = !!rlang::sym(raw_var), to = tgt_val)) |> # nolint object_name_linter()
dplyr::select(-dplyr::any_of(setdiff(raw_var, tgt_var))) |>
dplyr::relocate(dplyr::all_of(tgt_var), .after = dplyr::last_col())
}
#' Derive an SDTM variable with a hardcoded value
#'
#'
#' @description
#' - [hardcode_no_ct()] maps a hardcoded value to a target SDTM variable that has
#' no terminology restrictions.
#'
#' - [hardcode_ct()] maps a hardcoded value to a target SDTM variable with
#' controlled terminology recoding.
#'
#' @param raw_dat The raw dataset (dataframe); must include the
#' variables passed in `id_vars` and `raw_var`.
#' @param raw_var The raw variable: a single string indicating the name of the
#' raw variable in `raw_dat`.
#' @param tgt_var The target SDTM variable: a single string indicating the name
#' of variable to be derived.
#' @param tgt_val The target SDTM value to be hardcoded into the variable
#' indicated in `tgt_var`.
#' @param ct_spec Study controlled terminology specification: a dataframe with a
#' minimal set of columns, see [ct_spec_vars()] for details. This parameter is
#' optional, if left as `NULL` no controlled terminology recoding is applied.
#' @param ct_clst A codelist code indicating which subset of the controlled
#' terminology to apply in the derivation. This parameter is optional, if left
#' as `NULL`, all possible recodings in `ct_spec` are attempted.
#' @param tgt_dat Target dataset: a data frame to be merged against `raw_dat` by
#' the variables indicated in `id_vars`. This parameter is optional, see
#' section Value for how the output changes depending on this argument value.
#' @param id_vars Key variables to be used in the join between the raw dataset
#' (`raw_dat`) and the target data set (`raw_dat`).
#'
#' @returns The returned data set depends on the value of `tgt_dat`:
#' - If no target dataset is supplied, meaning that `tgt_dat` defaults to
#' `NULL`, then the returned data set is `raw_dat`, selected for the variables
#' indicated in `id_vars`, and a new extra column: the derived variable, as
#' indicated in `tgt_var`.
#' - If the target dataset is provided, then it is merged with the raw data set
#' `raw_dat` by the variables indicated in `id_vars`, with a new column: the
#' derived variable, as indicated in `tgt_var`.
#'
#' @examples
#' md1 <-
#' tibble::tribble(
#' ~oak_id, ~raw_source, ~patient_number, ~MDRAW,
#' 1L, "MD1", 101L, "BABY ASPIRIN",
#' 2L, "MD1", 102L, "CORTISPORIN",
#' 3L, "MD1", 103L, NA_character_,
#' 4L, "MD1", 104L, "DIPHENHYDRAMINE HCL"
#' )
#'
#' # Derive a new variable `CMCAT` by overwriting `MDRAW` with the
#' # hardcoded value "GENERAL CONCOMITANT MEDICATIONS".
#' hardcode_no_ct(
#' tgt_val = "GENERAL CONCOMITANT MEDICATIONS",
#' raw_dat = md1,
#' raw_var = "MDRAW",
#' tgt_var = "CMCAT"
#' )
#'
#' cm_inter <-
#' tibble::tribble(
#' ~oak_id, ~raw_source, ~patient_number, ~CMTRT, ~CMINDC,
#' 1L, "MD1", 101L, "BABY ASPIRIN", NA,
#' 2L, "MD1", 102L, "CORTISPORIN", "NAUSEA",
#' 3L, "MD1", 103L, "ASPIRIN", "ANEMIA",
#' 4L, "MD1", 104L, "DIPHENHYDRAMINE HCL", "NAUSEA",
#' 5L, "MD1", 105L, "PARACETAMOL", "PYREXIA"
#' )
#'
#' # Derive a new variable `CMCAT` by overwriting `MDRAW` with the
#' # hardcoded value "GENERAL CONCOMITANT MEDICATIONS" with a prior join to
#' # `target_dataset`.
#' hardcode_no_ct(
#' tgt_dat = cm_inter,
#' tgt_val = "GENERAL CONCOMITANT MEDICATIONS",
#' raw_dat = md1,
#' raw_var = "MDRAW",
#' tgt_var = "CMCAT"
#' )
#'
#' # Controlled terminology specification
#' (ct_spec <- read_ct_spec_example("ct-01-cm"))
#'
#' # Hardcoding of `CMCAT` with the value `"GENERAL CONCOMITANT MEDICATIONS"`
#' # involving terminology recoding. `NA` values in `MDRAW` are preserved in
#' # `CMCAT`.
#' hardcode_ct(
#' tgt_dat = cm_inter,
#' tgt_var = "CMCAT",
#' raw_dat = md1,
#' raw_var = "MDRAW",
#' tgt_val = "GENERAL CONCOMITANT MEDICATIONS",
#' ct_spec = ct_spec,
#' ct_clst = "C66729"
#' )
#'
#' @name harcode
NULL
#' @export
#' @rdname harcode
hardcode_no_ct <- function(tgt_dat = NULL,
tgt_val,
raw_dat,
raw_var,
tgt_var,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
assertthat::assert_that(assertthat::is.scalar(tgt_val),
msg = "`tgt_val` must be a scalar value."
)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat, required_vars = rlang::syms(id_vars), optional = TRUE)
sdtm_hardcode(
tgt_dat = tgt_dat,
tgt_val = tgt_val,
raw_dat = raw_dat,
raw_var = raw_var,
tgt_var = tgt_var,
id_vars = id_vars
)
}
#' @export
#' @rdname harcode
hardcode_ct <-
function(tgt_dat = NULL,
tgt_val,
raw_dat,
raw_var,
tgt_var,
ct_spec,
ct_clst,
id_vars = oak_id_vars()) {
admiraldev::assert_character_scalar(raw_var)
admiraldev::assert_character_scalar(tgt_var)
assertthat::assert_that(assertthat::is.scalar(tgt_val),
msg = "`tgt_val` must be a scalar value."
)
admiraldev::assert_character_vector(id_vars)
assertthat::assert_that(contains_oak_id_vars(id_vars),
msg = "`id_vars` must include the oak id vars."
)
admiraldev::assert_data_frame(raw_dat, required_vars = rlang::syms(c(id_vars, raw_var)))
admiraldev::assert_data_frame(tgt_dat,
required_vars = rlang::syms(id_vars),
optional = TRUE
)
assert_ct_spec(ct_spec, optional = FALSE)
assert_ct_clst(ct_spec = ct_spec, ct_clst = ct_clst, optional = FALSE)
sdtm_hardcode(
tgt_dat = tgt_dat,
tgt_val = tgt_val,
raw_dat = raw_dat,
raw_var = raw_var,
tgt_var = tgt_var,
ct_spec = ct_spec,
ct_clst = ct_clst,
id_vars = id_vars
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.