R/segTraj_Gmixt_simultanee.R

Defines functions Gmixt_simultanee

Documented in Gmixt_simultanee

# Gmixt_simultanee
#'
#' Gmixt_simultanee calculates the cost matrix 
#' for a segmentation/clustering model
#' @param Don the bivariate  signal
#' @param lmin the minimum size for a segment
#' @param phi  the  parameters of the mixture
#' @return a matrix  G(i,j), the mixture density 
#' for segment between points (i+1) to j
#' G(i,j) = \deqn{\\sum_{p=1}^P \log (\\pi_p f(y^{ij};\\theta_p))}
#' { \\sum{p=1 -> P} log( \\pi{p} f( y{ij} ; \\theta{p} ) ) }
#'          Rq: this density if factorized in order to avoid numerical zeros in
#'          the log

Gmixt_simultanee <- function(Don, lmin, phi) {
  P <- length(phi$prop)
  m <- phi$mu
  s <- phi$sigma
  prop <- phi$prop

  n <- dim(Don)[2]
  G <- list()

  for (signal in 1:2) {
    z <- Don[signal, ]
    lg <- lmin:n # possible position for the end of  first segment
    zi <- cumsum(z) # z cumul
    zi <- zi[lg]
    z2 <- z^2
    z2i <- cumsum(z2)
    z2i <- z2i[lg]

    # rappel: on fait du plus court chemin
    #        donc on prend -LV
    # G[[signal]][1, l] contains the likelihood of the segment starting in 1 and
    # finishing

    G[[signal]] <- matrix(Inf, ncol = n, nrow = n)

    ## The following code makes use of vectoriel facilities
    wk <- (z2i / lg - (zi / lg)^2)
    dkp <- (sweep(repmat(t(zi / lg), P, 1), MARGIN = 1, STATS = m[signal, ]))^2
    ##  Aold     = (wkold+dkpold)/repmat(s[signal,]^2,1,n-lmin+1)+
    ##  log(2*pi*repmat(s[signal,]^2,1,n-lmin+1))
    A <- sweep(dkp, MARGIN = 2, STATS = wk, FUN = "+")
    A <- sweep(A, MARGIN = 1, STATS = s[signal, ]^2, FUN = "/")
    A <- sweep(A, MARGIN = 1, STATS = log(2 * pi * s[signal, ]^2), FUN = "+")
    A <- -0.5 * sweep(A, MARGIN = 2, STATS = lg, FUN = "*")
    A <- sweep(A, MARGIN = 1, STATS = log(prop), FUN = "+")
    ## finally A[k,p] contains -0.5 *\sum_{l=1^(k)} (Z_l -\mu^p)^2 /(sigma_p^2)
    ## +log(pi_p)
    ## that is the density of observing segment 1:k and beeing in cluster p

    ## the normalization using A_max is used to avoid numerical issues with the
    ## exponential
    A_max <- apply(A, 2, max)
    Aprov <- exp(sweep(A, MARGIN = 2, STATS = A_max, FUN = "-"))
    G[[signal]][1, lmin:n] <- -log(apply(Aprov, 2, sum)) - A_max

    for (i in (2:(n - lmin + 1))) {
      ni <- n - i - lmin + 3
      z2i <- z2i[2:ni] - z2[i - 1]
      zi <- zi[2:ni] - z[i - 1]
      lgi <- lmin:(n - i + 1)
      wk <- (z2i) / (lgi) - (zi / (lgi))^2
      dkp <- (sweep(repmat(t(zi / lgi), P, 1),
                    MARGIN = 1,
                    STATS = m[signal, ]))^2

      A <- sweep(dkp, MARGIN = 2, STATS = wk, FUN = "+")
      A <- sweep(A, MARGIN = 1, STATS = s[signal, ]^2, FUN = "/")
      A <- sweep(A, MARGIN = 1, STATS = log(2 * pi * s[signal, ]^2), FUN = "+")
      A <- -0.5 * sweep(A, MARGIN = 2, STATS = lgi, FUN = "*")
      A <- sweep(A, MARGIN = 1, STATS = log(prop), FUN = "+")
      A_max <- apply(A, 2, max)
      Aprov <- exp(sweep(A, MARGIN = 2, STATS = A_max, FUN = "-"))
      G[[signal]][i, (i + lmin - 1):n] <- -log(apply(Aprov, 2, sum)) - A_max

      ## problem if i=n-lmin+1
      ## Aprov[,(i+lmin-1):n] is a vector, and apply can't be used
      ## this case is postponed at the end of the loop
    }
    # i <- (n-lmin+1)
    #  Aprov <- sweep(A, MARGIN = 1, STATS = A[,i], FUN = '-')
    #  Aprov_max = apply(Aprov,2,max)
    #  Aprov     = exp(sweep(Aprov, MARGIN = 2, STATS = Aprov_max, FUN = '-'))
    #  ## problem if i=n-lmin+1
    #  ## Aprov[,(i+lmin-1):n] is a vector, and apply can't be used
    #  ## this case is postponed at the end of the loop
    #  G[[signal]][i,(i+lmin-1):n] = -log(sum(Aprov[,(i+lmin-1):n])) -
    #  Aprov_max[(i+lmin-1):n]
  }

  res <- Reduce("+", G)
  invisible(res)
}

Try the segclust2d package in your browser

Any scripts or data that you put into this service are public.

segclust2d documentation built on Oct. 11, 2021, 9:10 a.m.