selectMeta: Estimation of Weight Functions in Meta Analysis
Version 1.0.8

Publication bias, the fact that studies identified for inclusion in a meta analysis do not represent all studies on the topic of interest, is commonly recognized as a threat to the validity of the results of a meta analysis. One way to explicitly model publication bias is via selection models or weighted probability distributions. In this package we provide implementations of several parametric and nonparametric weight functions. The novelty in Rufibach (2011) is the proposal of a non-increasing variant of the nonparametric weight function of Dear & Begg (1992). The new approach potentially offers more insight in the selection process than other methods, but is more flexible than parametric approaches. To maximize the log-likelihood function proposed by Dear & Begg (1992) under a monotonicity constraint we use a differential evolution algorithm proposed by Ardia et al (2010a, b) and implemented in Mullen et al (2009). In addition, we offer a method to compute a confidence interval for the overall effect size theta, adjusted for selection bias as well as a function that computes the simulation-based p-value to assess the null hypothesis of no selection as described in Rufibach (2011, Section 6).

Package details

AuthorKaspar Rufibach <[email protected]>
Date of publication2015-07-03 12:51:10
MaintainerKaspar Rufibach <[email protected]>
LicenseGPL (>= 2)
Version1.0.8
URL http://www.kasparrufibach.ch
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("selectMeta")

Try the selectMeta package in your browser

Any scripts or data that you put into this service are public.

selectMeta documentation built on May 29, 2017, 5:48 p.m.