Description Usage Arguments Value Author(s) References
The density of the p-value generated by a test of the hypothesis
H_0 : Y \sim N(0, σ^2) \ \ vs. \ \ H_1 : Y \sim N(θ, η^2)
has the form
f(p; θ, σ, η) = \frac{σ}{2 η} \frac{φ\Bigl((-σ Φ^{-1}(p / 2) - θ) / η\Bigr) + φ\Bigl((σ Φ^{-1}(p / 2) - θ) / η\Bigr)}{φ(Φ^{-1}(p / 2))}
where η^2 = u^2 + σ^2. We refer to Rufibach (2011) for details.
1 2 3 4 |
p, q |
Quantile. |
prob |
Probability. |
u |
Standard error of the effect size. |
theta |
Effect size. |
sigma2 |
Random effect variance component. |
n |
Number of random numbers to be generated. |
seed |
Seed to set. |
dPval
gives the density, pPval
gives the distribution function, qPval
gives the quantile function, and rPval
generates
random deviates for the density f(p; θ, σ, η).
Kaspar Rufibach (maintainer), kaspar.rufibach@gmail.com,
http://www.kasparrufibach.ch
Dear, K.B.G. and Begg, C.B. (1992). An Approach for Assessing Publication Bias Prior to Performing a Meta-Analysis. Statist. Sci., 7(2), 237–245.
Rufibach, K. (2011). Selection Models with Monotone Weight Functions in Meta-Analysis. Biom. J., 53(4), 689–704.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.