Designed for fitting hidden (latent) Markov models and mixture hidden Markov models for social sequence data and other categorical time series. Also some more restricted versions of these type of models are available: Markov models, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and hidden Markov models. Models are estimated using maximum likelihood via the EM algorithm and/or direct numerical maximization with analytical gradients. All main algorithms are written in C++ with support for parallel computation. Documentation is available via several vignettes in this page, and the paper by Helske and Helske (2019, <doi:10.18637/jss.v088.i03>).
Package details 


Author  Jouni Helske [aut, cre] (<https://orcid.org/000000017130793X>), Satu Helske [aut] (<https://orcid.org/0000000305320153>) 
Maintainer  Jouni Helske <jouni.helske@iki.fi> 
License  GPL (>= 2) 
Version  1.0.14 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.