| data_gen_p | R Documentation |
data_gen_p generates simulated panel data for estimating various panel stochastic frontier models, including the Generalized True Random Effects (GTRE), True Random Effects (TRE), Pooled Cross-Section (PCS), and True Fixed Effects (TFE) models. The function returns the data as a pdata.frame. All variants are produced so that the user can select those that they want.
data_gen_p(t, N, rand, sig_u, sig_v, sig_r, sig_h, cons, tau = 0.5, mu = 0, beta1, beta2)
t |
The number of time periods. |
N |
The number of individuals. |
rand |
A seed for the random number generator to ensure reproducibility. |
sig_u |
The standard deviation ( |
sig_v |
The standard deviation ( |
sig_r |
The standard deviation ( |
sig_h |
The standard deviation ( |
cons |
The constant term ( |
tau |
The dependence parameter ( |
mu |
The mean parameter ( |
beta1 |
The coefficient for the |
beta2 |
The coefficient for the |
A pdata.frame object with N \times t observations, containing the following columns:
name Individual identifier.
year Time period identifier.
cons The constant term used in the data generation.
x1, x2 Explanatory variables generated from a log-uniform distribution.
x1_w, x2_w Explanatory variables with dependence parameter \tau and linkage with r_i, used for the TFE model.
u, v, r, h The generated error and individual effect components.
y_gtre, y_tre, y_pcs, y_tfe Output variables for the Production Frontier models, including the constant.
y_gtre_nc, y_tre_nc, y_pcs_nc Output variables for the Production Frontier models, excluding the constant.
c_gtre, c_tre, c_pcs, c_tfe Output variables for the Cost Frontier models, including the constant.
c_gtre_nc, c_tre_nc, c_pcs_nc Output variables for the Cost Frontier models, excluding the constant.
y_fd Output variable for the first difference model (see Wang and Ho, 2010).
x_fd Explanatory variable for the y_fd model.
u_fd_star, z_fd, r_fd, u_fd Components used to generate y_fd.
u_gtre, z_gtre, y_gtre_z, y_tre_z Variables for models with heteroskedastic inefficiency (\sigma_{u,i} = \exp(0.9 + 0.6 Z_{i})).
The data is generated based on standard Stochastic Frontier Analysis (SFA) formulations, primarily for a **Production Frontier** where the one-sided error component u_{it} is subtracted:
y_gtre: GTRE model: y_{it} = \beta_0 + \beta_1 x_{1,it} + \beta_2 x_{2,it} + r_i - h_i + v_{it} - u_{it}
y_tre: TRE model: y_{it} = \beta_0 + \beta_1 x_{1,it} + \beta_2 x_{2,it} + r_i + v_{it} - u_{it}
y_pcs: PCS model: y_{it} = \beta_0 + \beta_1 x_{1,it} + \beta_2 x_{2,it} + v_{it} - u_{it}
y_tfe: TFE model: y_{it} = \beta_1 x_{1,it}^w + \beta_2 x_{2,it}^w + r_i + v_{it} - u_{it}
y_gtre_z: GTRE with Heteroskedastic u_{it}: \sigma_{u,i} = \exp(0.9 + 0.6 Z_i).
For **Cost Frontier** models, the one-sided error component u_{it} is added (e.g., c_gtre).
The error terms are generated as:
r_i \sim N(0, \sigma_r^2) (individual two-sided effect)
h_i \sim |N(0, \sigma_h^2)| (individual one-sided effect)
v_{it} \sim N(0, \sigma_v^2) (two-sided noise)
u_{it} \sim |N(0, \sigma_u^2)| (one-sided inefficiency)
The First-Difference estimation model (y_fd) uses a variation where r_{i,fd} \sim U(0,1) and u_{it,fd} is generated using a heteroskedastic truncated-normal structure, reflecting an alternative model type.
A pdata.frame object containing N \times t observations suitable for Stochastic Frontier Analysis (SFA).
David Bernstein
Chen, Y., Schmidt, P., & Wang, H. (2014). Consistent estimation of the fixed effects stochastic frontier model. Journal of Econometrics, 181(2), 65-76.
Filippini, M., & Greene, W. H. (2016). Persistent and transient productive inefficiency: a maximum simulated likelihood approach. Journal of Productivity Analysis, 45, 187-196.
Wang, H., & Ho, C. M. (2010). Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics, 157(2), 286-296.
data_gen_p, to see all the data generating processes
library(sfa)
# Generate a dataset
data_trial <- data_gen_p(t=10, N=100, rand = 100,
sig_u = 1, sig_v = 0.3,
sig_r = .2, sig_h = .4,
cons = 0.5, tau = 0.5,
mu= 0.5, beta1 = 0.5,
beta2 = 0.5)
# See the first few rows
head(data_trial)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.