| sfm | R Documentation |
Implementation of the cross-sectional stochastic frontier model across an array of distributional assumptions for both v and u (user specified). For panel models, see the psfm() call.
sfm(formula, model_name, data,maxit.bobyqa,maxit.psoptim,maxit.optim,REPORT,
trace,pgtol,start_val,PSopt,optHessian,inefdec,upper,Method,eta,alpha,verbose=FALSE,
rand.psoptim=NULL)
formula |
a symbolic description for the model to be estimated |
model_name |
model name for the estimation includes the: normal-half normal (NHN), normal-exponential (NE), student's t-half t (THT), Normal-Rayleigh (NR), and the normal-truncated normal (NTN). |
data |
A data set |
maxit.bobyqa |
Maximum number of iterations for the bobyqa optimization routine |
maxit.psoptim |
Maximum number of iterations for the psoptim optimization routine |
maxit.optim |
Maximum number of iterations for the optim optimization routine |
REPORT |
reporting parameter |
trace |
trace |
pgtol |
pgtol |
start_val |
starting value (optional) |
PSopt |
use psoptim optimization routine (T or F) |
optHessian |
Logical. Should a numerically differentiated Hessian matrix be returned while using the optim routine? (for optim routine) |
inefdec |
Production or cost function |
upper |
Vector of upper values for the optim package. |
Method |
The method to be used for optim. See 'Details' within optim. |
eta |
Parameter used for psi-divergence. |
alpha |
Parameter used for MDPD. |
verbose |
Logical. Print optimization progress messages? Default is |
rand.psoptim |
Integer. seed for replication of psoptim. Default to |
The options include the Normal-Half Normal (NHN), Normal-exponential (NE), Student's t-Half t (THT), and the Normal-Truncated Normal (NTN). NHN_Z and NE_Z are extensions for the NHN and NE models that allow for modeling the u-component of those models with determinants of inefficiency.
Outputs include E[exp(-u)|e] given by exp_u_hat, following Battese and Coelli (1988, JoE), where appropriate.
An object of class "sfareg" containing the following components:
out |
A matrix with parameter estimates, standard errors, and t-values. |
opt |
A list containing the optimization results from the final optimization procedure. |
total_time |
The total computation time for model estimation. |
start_v |
The starting values used in the optimization. |
model_name |
The name of the stochastic frontier model estimated. |
formula |
The formula used in the model specification. |
exp_u_hat |
Predicted technical efficiency (expected values). Available for models: NHN, NHN_Z, NR, NG, and NNAK. |
med_u_hat |
Predicted technical efficiency (median values). Available only for the NHN model. |
coefficients |
A vector of estimated parameters. |
std.errors |
A vector of standard errors for the estimated parameters (NA if |
t.values |
A vector of t-values for the estimated parameters (NA if |
call |
The matched call. |
Standard errors require optHessian set to TRUE
David H. Bernstein and Alexander Stead
see also
library(sfa)
cs_data_trial <- data_gen_cs(N= 1000, rand = 1, sig_u = 0.3, sig_v = 0.3,
cons = 0.5, beta1 = 0.5, beta2 = 0.5, a = 4, mu = 1)
cs.nhnz <- sfm(formula = y_pcs_z ~ x1 +x2| z, model_name = "NHN",
data = cs_data_trial, PSopt = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.