| zsfm | R Documentation |
Code to use the Zero-Inflated Stochastic Frontier Model
zsfm(formula, model_name = c("ZISF", "ZISF_Z"),
data, maxit.bobyqa = 10000,maxit.psoptim = 1000, maxit.optim = 1000,
REPORT = 1, trace = 0, pgtol = 0,start_val = FALSE,PSopt = FALSE,
optHessian, inefdec = TRUE, upper = NA,
Method = "L-BFGS-B",logit = TRUE,verbose=FALSE,rand.psoptim = NULL)
formula |
a symbolic description for the model to be estimated |
model_name |
model name for the estimation |
data |
A data set |
maxit.bobyqa |
Maximum number of iterations for the bobyqa optimization routine |
maxit.psoptim |
Maximum number of iterations for the psoptim optimization routine |
maxit.optim |
Maximum number of iterations for the optim optimization routine |
REPORT |
reporting parameter |
trace |
trace |
pgtol |
pgtol |
start_val |
starting value (optional) |
PSopt |
use psoptim optimization routine (T or F) |
optHessian |
Logical. Should a numerically differentiated Hessian matrix be returned while using the optim routine? (for optim routine) |
inefdec |
Production or cost function |
upper |
Vector of upper values for the optim package. |
Method |
The method to be used for optim. See 'Details' within optim. |
logit |
Choice of using logit function |
verbose |
Logical. Print optimization progress messages? Default is |
rand.psoptim |
Integer. seed for replication of psoptim. Default to |
Example based on: A zero inefficiency stochastic frontier model, Journal of Econometrics, S. C. Kumbhakar, C. F. Parmeter and E. G. Tsionas, 2013
An object of class "sfareg" containing the following components:
out |
A matrix with parameter estimates, standard errors, and t-values. |
opt |
A list containing the optimization results from the final optimization procedure. |
total_time |
The total computation time for model estimation. |
start_v |
The starting values used in the optimization. |
model_name |
The name of the zero-inflated stochastic frontier model estimated (ZISF or ZISF_Z). |
formula |
The formula used in the model specification. |
jlms |
Predicted technical efficiency using the Jondrow et al. (1982) conditional mean estimator (JLMS). |
post.prob |
Posterior probabilities of being fully efficient. |
coefficients |
A vector of estimated parameters. |
std.errors |
A vector of standard errors for the estimated parameters (NA if |
t.values |
A vector of t-values for the estimated parameters (NA if |
call |
The matched call. |
Standard errors require optHessian set to TRUE
Chris F. Parmeter and David H. Bernstein
S. C. Kumbhakar, C. F. Parmeter and E. G. Tsionas (2013)
panel89
library(sfa)
eqz <- y ~ q1 + q2 + q3 + q4 + q5 + w1 + w2 + w3 + w4 | z
data(panel89)
zsfm(formula = eqz,
model_name = "ZISF_Z",
data = panel89,
logit = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.